ﻻ يوجد ملخص باللغة العربية
We propose and experimentally demonstrate an optical pulse sampling method for photonic blind source separation. The photonic system processes and separates wideband signals based on the statistical information of the mixed signals and thus the sampling frequency can be orders of magnitude lower than the bandwidth of the signals. The ultra-fast optical pulse functions as a tweezer that collects samples of the signals at very low sampling rates, and each sample is short enough to maintain the statistical properties of the signals. The low sampling frequency reduces the workloads of the analog to digital conversion and digital signal processing systems. In the meantime, the short pulse sampling maintains the accuracy of the sampled signals, so the statistical properties of the undersampling signals are the same as the statistical properties of the original signals. With the optical pulses generated from a mode-locked laser, the optical pulse sampling system is able to process and separate mixed signals with bandwidth over 100GHz and achieves a dynamic range of 30dB.
We proposed and demonstrated an optical pulse sampling method for photonic blind source separation. It can separate large bandwidth of mixed signals by small sampling frequency, which can reduce the workload of digital signal processing.
We propose and experimentally demonstrate an interference management system that removes wideband wireless interference by using photonic signal processing and free space optical communication. The receiver separates radio frequency interferences by
In this work, we consider the problem of blind source separation (BSS) by departing from the usual linear model and focusing on the linear-quadratic (LQ) model. We propose two provably robust and computationally tractable algorithms to tackle this pr
Terahertz (THz) technology has been a great candidate for applications, including pharmaceutic analysis, chemical identification, and remote sensing and imaging due to its non-invasive and non-destructive properties. Among those applications, penetra
Recently a blind source separation model was suggested for spatial data together with an estimator based on the simultaneous diagonalisation of two scatter matrices. The asymptotic properties of this estimator are derived here and a new estimator, ba