ﻻ يوجد ملخص باللغة العربية
We investigate the application of Hybrid Effective Field Theory (HEFT) -- which combines a Lagrangian bias expansion with subsequent particle dynamics from $N$-body simulations -- to the modeling of $k$-Nearest Neighbor Cumulative Distribution Functions ($k{rm NN}$-${rm CDF}$s) of biased tracers of the cosmological matter field. The $k{rm NN}$-${rm CDF}$s are sensitive to all higher order connected $N$-point functions in the data, but are computationally cheap to compute. We develop the formalism to predict the $k{rm NN}$-${rm CDF}$s of discrete tracers of a continuous field from the statistics of the continuous field itself. Using this formalism, we demonstrate how $k{rm NN}$-${rm CDF}$ statistics of a set of biased tracers, such as halos or galaxies, of the cosmological matter field can be modeled given a set of low-redshift HEFT component fields and bias parameter values. These are the same ingredients needed to predict the two-point clustering. For a specific sample of halos, we show that both the two-point clustering textit{and} the $k{rm NN}$-${rm CDF}$s can be well-fit on quasi-linear scales ($gtrsim 20 h^{-1}{rm Mpc}$) by the second-order HEFT formalism with the textit{same values} of the bias parameters, implying that joint modeling of the two is possible. Finally, using a Fisher matrix analysis, we show that including $k{rm NN}$-${rm CDF}$ measurements over the range of allowed scales in the HEFT framework can improve the constraints on $sigma_8$ by roughly a factor of $3$, compared to the case where only two-point measurements are considered. Combining the statistical power of $k{rm NN}$ measurements with the modeling power of HEFT, therefore, represents an exciting prospect for extracting greater information from small-scale cosmological clustering.
In this paper we test the perturbative halo bias model at the field level. The advantage of this approach is that any analysis can be done without sample variance if the same initial conditions are used in simulations and perturbation theory calculat
With the completion of the Planck mission, in order to continue to gather cosmological information it has become crucial to understand the Large Scale Structures (LSS) of the universe to percent accuracy. The Effective Field Theory of LSS (EFTofLSS)
Cross-correlations between datasets are used in many different contexts in cosmological analyses. Recently, $k$-Nearest Neighbor Cumulative Distribution Functions ($k{rm NN}$-${rm CDF}$) were shown to be sensitive probes of cosmological (auto) cluste
The use of summary statistics beyond the two-point correlation function to analyze the non-Gaussian clustering on small scales is an active field of research in cosmology. In this paper, we explore a set of new summary statistics -- the $k$-Nearest N
We use the $k$-nearest neighbor probability distribution function ($k$NN-PDF, Banerjee & Abel 2021) to assess convergence in a scale-free $N$-body simulation. Compared to our previous two-point analysis, the $k$NN-PDF allows us to quantify our result