ﻻ يوجد ملخص باللغة العربية
We present Clinica (www.clinica.run), an open-source software platform designed to make clinical neuroscience studies easier and more reproducible. Clinica aims for researchers to i) spend less time on data management and processing, ii) perform reproducible evaluations of their methods, and iii) easily share data and results within their institution and with external collaborators. The core of Clinica is a set of automatic pipelines for processing and analysis of multimodal neuroimaging data (currently, T1-weighted MRI, diffusion MRI and PET data), as well as tools for statistics, machine learning and deep learning. It relies on the brain imaging data structure (BIDS) for the organization of raw neuroimaging datasets and on established tools written by the community to build its pipelines. It also provides converters of public neuroimaging datasets to BIDS (currently ADNI, AIBL, OASIS and NIFD). Processed data include image-valued scalar fields (e.g. tissue probability maps), meshes, surface-based scalar fields (e.g. cortical thickness maps) or scalar outputs (e.g. regional averages). These data follow the ClinicA Processed Structure (CAPS) format which shares the same philosophy as BIDS. Consistent organization of raw and processed neuroimaging files facilitates the execution of single pipelines and of sequences of pipelines, as well as the integration of processed data into statistics or machine learning frameworks. The target audience of Clinica is neuroscientists or clinicians conducting clinical neuroscience studies involving multimodal imaging, and researchers developing advanced machine learning algorithms applied to neuroimaging data.
Transition from conventional to digital pathology requires a new category of biomedical informatic infrastructure which could facilitate delicate pathological routine. Pathological diagnoses are sensitive to many external factors and is known to be s
Cryo-electron tomography (cryo-ET) is an emerging technology for the 3D visualization of structural organizations and interactions of subcellular components at near-native state and sub-molecular resolution. Tomograms captured by cryo-ET contain hete
{mu}Manager, an open-source microscopy acquisition software, has been an essential tool for many microscopy experiments over the past 15 years, but is not easy to use for experiments in which image acquisition and analysis are closely coupled. This i
Imaging methods used in modern neuroscience experiments are quickly producing large amounts of data capable of providing increasing amounts of knowledge about neuroanatomy and function. A great deal of information in these datasets is relatively unex
Motivation: In this paper we present the latest release of EBIC, a next-generation biclustering algorithm for mining genetic data. The major contribution of this paper is adding support for big data, making it possible to efficiently run large genomi