ترغب بنشر مسار تعليمي؟ اضغط هنا

Layer Hall effect in a 2D topological Axion antiferromagnet

128   0   0.0 ( 0 )
 نشر من قبل Su-Yang Xu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

While ferromagnets have been known and exploited for millennia, antiferromagnets (AFMs) were only discovered in the 1930s. The elusive nature indicates AFMs unique properties: At large scale, due to the absence of global magnetization, AFMs may appear to behave like any non-magnetic material; However, such a seemingly mundane macroscopic magnetic property is highly nontrivial at microscopic level, where opposite spin alignment within the AFM unit cell forms a rich internal structure. In topological AFMs, such an internal structure leads to a new possibility, where topology and Berry phase can acquire distinct spatial textures. Here, we study this exciting possibility in an AFM Axion insulator, even-layered MnBi$_2$Te$_4$ flakes, where spatial degrees of freedom correspond to different layers. Remarkably, we report the observation of a new type of Hall effect, the layer Hall effect, where electrons from the top and bottom layers spontaneously deflect in opposite directions. Specifically, under no net electric field, even-layered MnBi$_2$Te$_4$ shows no anomalous Hall effect (AHE); However, applying an electric field isolates the response from one layer and leads to the surprising emergence of a large layer-polarized AHE (~50%$frac{e^2}{h}$). Such a layer Hall effect uncovers a highly rare layer-locked Berry curvature, which serves as a unique character of the space-time $mathcal{PT}$-symmetric AFM topological insulator state. Moreover, we found that the layer-locked Berry curvature can be manipulated by the Axion field, E$cdot$B, which drives the system between the opposite AFM states. Our results achieve previously unavailable pathways to detect and manipulate the rich internal spatial structure of fully-compensated topological AFMs. The layer-locked Berry curvature represents a first step towards spatial engineering of Berry phase, such as through layer-specific moire potential.



قيم البحث

اقرأ أيضاً

128 - Y. S. Hou , , R. Q. Wu 2018
We propose to use ferromagnetic insulator MnBi2Se4/Bi2Se3/antiferromagnetic insulator Mn2Bi2Se5 heterostructures for the realization of the axion insulator state. Importantly, the axion insulator state in such heterostructures only depends on the mag netization of the ferromagnetic insulator and hence can be observed in a wide range of external magnetic field. Using density functional calculations and model Hamiltonian simulations, we find that the top and bottom surfaces have opposite half-quantum Hall conductance, with a sizable global spin gap of 5.1 meV opened for the topological surface states of Bi2Se3. Our work provides a new strategy for the search of axion insulators by using van der Waals antiferromagnetic insulators along with three-dimensional topological insulators.
Time-reversal symmetry breaking is the basic physics concept underpinning many magnetic topological phenomena such as the anomalous Hall effect (AHE) and its quantized variant. The AHE has been primarily accompanied by a ferromagnetic dipole moment, which hinders the topological quantum states and limits data density in memory devices, or by a delicate noncollinear magnetic order with strong spin decoherence, both limiting their applicability. A potential breakthrough is the recent theoretical prediction of the AHE arising from collinear antiferromagnetism in an anisotropic crystal environment. This new mechanism does not require magnetic dipolar or noncollinear fields. However, it has not been experimentally observed to date. Here we demonstrate this unconventional mechanism by measuring the AHE in an epilayer of a rutile collinear antiferromagnet RuO$_2$. The observed anomalous Hall conductivity is large, exceeding 300 S/cm, and is in agreement with the Berry phase topological transport contribution. Our results open a new unexplored chapter of time-reversal symmetry breaking phenomena in the abundant class of collinear antiferromagnetic materials.
A central theme in condensed matter physics is to create and understand the exotic states of matter by incorporating magnetism into topological materials. One prime example is the quantum anomalous Hall (QAH) state. Recently, MnBi2Te4 has been demons trated to be an intrinsic magnetic topological insulator and the QAH effect was observed in exfoliated MnBi2Te4 flakes. Here, we used molecular beam epitaxy (MBE) to grow MnBi2Te4 films with thickness down to 1 septuple layer (SL) and performed thickness-dependent transport measurements. We observed a non-square hysteresis loop in the antiferromagnetic state for films with thickness greater than 2 SL. The hysteresis loop can be separated into two AH components. Through careful analysis, we demonstrated that one AH component with the larger coercive field is from the dominant MnBi2Te4 phase, while the other AH component with the smaller coercive field is from the minor Mn-doped Bi2Te3 phase in the samples. The extracted AH component of the MnBi2Te4 phase shows a clear even-odd layer-dependent behavior, a signature of antiferromagnetic thin films. Our studies reveal insights on how to optimize the MBE growth conditions to improve the quality of MnBi2Te4 films, in which the QAH and other exotic states are predicted.
A topological insulator (TI) interfaced with a magnetic insulator (MI) may host an anomalous Hall effect (AHE), a quantum AHE, and a topological Hall effect (THE). Recent studies, however, suggest that coexisting magnetic phases in TI/MI heterostruct ures may result in an AHE-associated response that resembles a THE but in fact is not. This article reports a genuine THE in a TI/MI structure that has only one magnetic phase. The structure shows a THE in the temperature range of T=2-3 K and an AHE at T=80-300 K. Over T=3-80 K, the two effects coexist but show opposite temperature dependencies. Control measurements, calculations, and simulations together suggest that the observed THE originates from skyrmions, rather than the coexistence of two AHE responses. The skyrmions are formed due to an interfacial DMI interaction. The DMI strength estimated is substantially higher than that in heavy metal-based systems.
106 - Haowei Xu , Jian Zhou , Ju Li 2021
Quantum anomalous Hall (QAH) effect generates quantized electric charge Hall conductance without external magnetic field. It requires both nontrivial band topology and time-reversal symmetry (TRS) breaking. In most cases, one could break the TRS of t ime-reversal invariant topological materials to yield QAH effect, which is essentially a topological phase transition. Conventional topological phase transition induced by external field/stimulus needs a route along which the bandgap closes and re-opens. Hence, the phase transition occurs only when the magnitude of field/stimulus is larger than a critical value. In this work we propose that using gapless surface states, the transition can happen at arbitrarily weak (but finite) external field strength. This can be regarded as an unconventional topological phase transition, where the bandgap closing is guaranteed by bulk-edge correspondence and symmetries, while the bandgap reopening is induced by external fields. We demonstrate this concept on the 2D surface states of 3D topological insulators like $rm Bi_2Se_3$, which become 2D QAH insulators once a circularly polarized light is turned on, according to van Vlecks effective Hamiltonian in Floquet time crystal theory. The sign of quantized Chern number can be controlled via the chirality of the light. This provides a convenient and dynamical approach to trigger topological phase transitions and create QAH insulators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا