ترغب بنشر مسار تعليمي؟ اضغط هنا

Genetic, Individual, and Familial Risk Correlates of Brain Network Controllability in Major Depressive Disorder

423   0   0.0 ( 0 )
 نشر من قبل Kelvin Sarink
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Background: A therapeutic intervention in psychiatry can be viewed as an attempt to influence the brains large-scale, dynamic network state transitions underlying cognition and behavior. Building on connectome-based graph analysis and control theory, Network Control Theory is emerging as a powerful tool to quantify network controllability - i.e., the influence of one brain region over others regarding dynamic network state transitions. If and how network controllability is related to mental health remains elusive. Methods: From Diffusion Tensor Imaging data, we inferred structural connectivity and inferred calculated network controllability parameters to investigate their association with genetic and familial risk in patients diagnosed with major depressive disorder (MDD, n=692) and healthy controls (n=820). Results: First, we establish that controllability measures differ between healthy controls and MDD patients while not varying with current symptom severity or remission status. Second, we show that controllability in MDD patients is associated with polygenic scores for MDD and psychiatric cross-disorder risk. Finally, we provide evidence that controllability varies with familial risk of MDD and bipolar disorder as well as with body mass index. Conclusions: We show that network controllability is related to genetic, individual, and familial risk in MDD patients. We discuss how these insights into individual variation of network controllability may inform mechanistic models of treatment response prediction and personalized intervention-design in mental health.



قيم البحث

اقرأ أيضاً

Mental disorders represent critical public health challenges as they are leading contributors to the global burden of disease and intensely influence social and financial welfare of individuals. The present comprehensive review concentrate on the two mental disorders: Major depressive Disorder (MDD) and Bipolar Disorder (BD) with noteworthy publications during the last ten years. There is a big need nowadays for phenotypic characterization of psychiatric disorders with biomarkers. Electroencephalography (EEG) signals could offer a rich signature for MDD and BD and then they could improve understanding of pathophysiological mechanisms underling these mental disorders. In this review, we focus on the literature works adopting neural networks fed by EEG signals. Among those studies using EEG and neural networks, we have discussed a variety of EEG based protocols, biomarkers and public datasets for depression and bipolar disorder detection. We conclude with a discussion and valuable recommendations that will help to improve the reliability of developed models and for more accurate and more deterministic computational intelligence based systems in psychiatry. This review will prove to be a structured and valuable initial point for the researchers working on depression and bipolar disorders recognition by using EEG signals.
Background: The evolution of symptoms over time is at the heart of understanding and treating mental disorders. However, a principled, quantitative framework explaining symptom dynamics remains elusive. Here, we propose a Network Control Theory of Ps ychopathology allowing us to formally derive a theoretical control energy which we hypothesize quantifies resistance to future symptom improvement in Major Depressive Disorder (MDD). We test this hypothesis and investigate the relation to genetic and environmental risk as well as resilience. Methods: We modelled longitudinal symptom-network dynamics derived from N=2,059 Beck Depression Inventory measurements acquired over a median of 134 days in a sample of N=109 patients suffering from MDD. We quantified the theoretical energy required for each patient and time-point to reach a symptom-free state given individual symptom-network topology (E 0 ) and 1) tested if E 0 predicts future symptom improvement and 2) whether this relationship is moderated by Polygenic Risk Scores (PRS) of mental disorders, childhood maltreatment experience, and self-reported resilience. Outcomes: We show that E 0 indeed predicts symptom reduction at the next measurement and reveal that this coupling between E 0 and future symptom change increases with higher genetic risk and childhood maltreatment while it decreases with resilience. Interpretation: Our study provides a mechanistic framework capable of predicting future symptom improvement based on individual symptom-network topology and clarifies the role of genetic and environmental risk as well as resilience. Our control-theoretic framework makes testable, quantitative predictions for individual therapeutic response and provides a starting-point for the theory-driven design of personalized interventions. Funding: German Research Foundation and Interdisciplinary Centre for Clinical Research, Munster
We apply the framework of optimal nonlinear control to steer the dynamics of a whole-brain network of FitzHugh-Nagumo oscillators. Its nodes correspond to the cortical areas of an atlas-based segmentation of the human cerebral cortex, and the inter-n ode coupling strengths are derived from Diffusion Tensor Imaging data of the connectome of the human brain. Nodes are coupled using an additive scheme without delays and are driven by background inputs with fixed mean and additive Gaussian noise. Optimal control inputs to nodes are determined by minimizing a cost functional that penalizes the deviations from a desired network dynamic, the control energy, and spatially non-sparse control inputs. Using the strength of the background input and the overall coupling strength as order parameters, the networks state-space decomposes into regions of low and high activity fixed points separated by a high amplitude limit cycle all of which qualitatively correspond to the states of an isolated network node. Along the borders, however, additional limit cycles, asynchronous states and multistability can be observed. Optimal control is applied to several state-switching and network synchronization tasks, and the results are compared to controllability measures from linear control theory for the same connectome. We find that intuitions from the latter about the roles of nodes in steering the network dynamics, which are solely based on connectome features, do not generally carry over to nonlinear systems, as had been previously implied. Instead, the role of nodes under optimal nonlinear control critically depends on the specified task and the systems location in state space. Our results shed new light on the controllability of brain network states and may serve as an inspiration for the design of new paradigms for non-invasive brain stimulation.
As the human brain develops, it increasingly supports coordinated control of neural activity. The mechanism by which white matter evolves to support this coordination is not well understood. We use a network representation of diffusion imaging data f rom 882 youth ages 8 to 22 to show that white matter connectivity becomes increasingly optimized for a diverse range of predicted dynamics in development. Notably, stable controllers in subcortical areas are negatively related to cognitive performance. Investigating structural mechanisms supporting these changes, we simulate network evolution with a set of growth rules. We find that all brain networks are structured in a manner highly optimized for network control, with distinct control mechanisms predicted in child versus older youth. We demonstrate that our results cannot be simply explained by changes in network modularity. This work reveals a possible mechanism of human brain development that preferentially optimizes dynamic network control over static network architecture.
Sensory feedback is critical to the performance of neural prostheses that restore movement control after neurological injury. Recent advances in direct neural control of paralyzed arms present new requirements for miniaturized, low-power sensor syste ms. To address this challenge, we developed a fully-integrated wireless sensor-brain-machine interface (SBMI) system for communicating key somatosensory signals, fingertip forces and limb joint angles, to the brain. The system consists of a tactile force sensor, an electrogoniometer, and a neural interface. The tactile force sensor features a novel optical waveguide on CMOS design for sensing. The electrogoniometer integrates an ultra low-power digital signal processor (DSP) for real-time joint angle measurement. The neural interface enables bidirectional neural stimulation and recording. Innovative designs of sensors and sensing interfaces, analog-to-digital converters (ADC) and ultra wide-band (UWB) wireless transceivers have been developed. The prototypes have been fabricated in 180nm standard CMOS technology and tested on the bench and in vivo. The developed system provides a novel solution for providing somatosensory feedback to next-generation neural prostheses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا