ترغب بنشر مسار تعليمي؟ اضغط هنا

Hints of spin-orbit resonances in the binary black hole population

79   0   0.0 ( 0 )
 نشر من قبل Vijay Varma
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Binary black hole spin measurements from gravitational wave observations can reveal the binarys evolutionary history. In particular, the spin orientations of the component BHs within the orbital plane, $phi_1$ and $phi_2$, can be used to identify binaries caught in the so-called spin-orbit resonances. In a companion paper, we demonstrate that $phi_1$ and $phi_2$ are best measured near the merger of the two black holes. In this work, we use these spin measurements to constrain the distribution of $phi_1$ and $Delta phi=phi_1 - phi_2$ over the astrophysical population of merging binary black holes. We find that there is a preference for $Delta phi sim pm pi$ in the population, which can be a signature of spin-orbit resonances. We also find a preference for $phi_1 sim -pi/4$ with respect to the line of separation near merger, which has not been predicted for any astrophysical formation channel. However, the strength of these preferences depend on our prior choices, and we are unable to constrain the widths of the $phi_1$ and $Delta phi$ distributions. Therefore, more observations are necessary to confirm the features we find. Finally, we derive constraints on the distribution of recoil kicks in the population, and use this to estimate the fraction of merger remnants retained by globular and nuclear star clusters.

قيم البحث

اقرأ أيضاً

Binary black hole spins are among the key observables for gravitational wave astronomy. Among the spin parameters, their orientations within the orbital plane, $phi_1$, $phi_2$ and $Delta phi=phi_1-phi_2$, are critical for understanding the prevalenc e of the spin-orbit resonances and merger recoils in binary black holes. Unfortunately, these angles are particularly hard to measure using current detectors, LIGO and Virgo. Because the spin directions are not constant for precessing binaries, the traditional approach is to measure the spin components at some reference stage in the waveform evolution, typically the point at which the frequency of the detected signal reaches 20 Hz. However, we find that this is a poor choice for the orbital-plane spin angle measurements. Instead, we propose measuring the spins at a fixed emph{dimensionless} time or frequency near the merger. This leads to significantly improved measurements for $phi_1$ and $phi_2$ for several gravitational wave events. Furthermore, using numerical relativity injections, we demonstrate that $Delta phi$ will also be better measured near the merger for louder signals expected in the future. Finally, we show that numerical relativity surrogate models are key for reliably measuring the orbital-plane spin orientations, even at moderate signal-to-noise ratios like $sim 30-45$.
The bright soft X-ray transient Nova Muscae 1991 was intensively observed during its entire 8-month outburst using the Large Area Counter (LAC) onboard the Ginga satellite. Recently, we obtained accurate estimates of the mass of the black hole primar y, the orbital inclination angle of the system, and the distance. Using these crucial input data and Ginga X-ray spectra, we have measured the spin of the black hole using the continuum-fitting method. For four X-ray spectra of extraordinary quality we have determined the dimensionless spin parameter of the black hole to be a/M = 0.63 (-0.19, +0.16) (1 sigma confidence level), a result that we confirm using eleven additional spectra of lower quality. Our spin estimate challenges two published results: It is somewhat higher than the value predicted by a proposed relationship between jet power and spin; and we find that the spin of the black hole is decidedly prograde, not retrograde as has been claimed.
We present the first systematic study of strong binary-single and binary-binary black hole interactions with the inclusion of general relativity. When including general relativistic effects in strong encounters, dissipation of orbital energy from gra vitational waves (GWs) can lead to captures and subsequent inspirals with appreciable eccentricities when entering the sensitive frequency ranges of the LIGO and Virgo GW detectors. In this study, we perform binary-binary and binary-single scattering experiments with general relativistic dynamics up through the 2.5 post-Newtonian order included, both in a controlled setting to gauge the importance of non-dissipative post-Newtonian terms and derive scaling relations for the cross-section of GW captures, as well as experiments tuned to the strong interactions from state-of-the art globular cluster models to assess the relative importance of the binary-binary channel at facilitating GW captures and the resultant eccentricity distributions of inspiral from channel. Although binary-binary interactions are 10-100 times less frequent in globular clusters than binary-single interactions, their longer lifetime and more complex dynamics leads to a higher probability for GW captures to occur during the encounter. We find that binary-binary interactions contribute 25-45% of the eccentric mergers which occur during strong black hole encounters in globular clusters, regardless of the properties of the cluster environment. The inclusion of higher multiplicity encounters in dense star clusters therefore have major implications on the predicted rates of highly eccentric binaries potentially detectable by the LIGO/Virgo network. As gravitational waveforms of eccentric inspirals are distinct from those generated by merging binaries which have circularized, measurements of eccentricity in such systems would highly constrain their formation scenario.
The compact primary in the X-ray binary Cygnus X-1 was the first black hole to be established via dynamical observations. We have recently determined accurate values for its mass and distance, and for the orbital inclination angle of the binary. Buil ding on these results, which are based on our favored (asynchronous) dynamical model, we have measured the radius of the inner edge of the black holes accretion disk by fitting its thermal continuum spectrum to a fully relativistic model of a thin accretion disk. Assuming that the spin axis of the black hole is aligned with the orbital angular momentum vector, we have determined that Cygnus X-1 contains a near-extreme Kerr black hole with a spin parameter a/M>0.95 (3sigma). For a less probable (synchronous) dynamical model, we find a/M>0.92 (3sigma). In our analysis, we include the uncertainties in black hole mass, orbital inclination angle and distance, and we also include the uncertainty in the calibration of the absolute flux via the Crab. These four sources of uncertainty totally dominate the error budget. The uncertainties introduced by the thin-disk model we employ are particularly small in this case given the extreme spin of the black hole and the disks low luminosity.
83 - Yuan-Zhu Wang 2020
With the black hole mass function (BHMF; assuming an exponential cutoff at a mass of $sim 40,M_odot$) of coalescing binary black hole systems constructed with the events detected in the O1 run of the advanced LIGO/Virgo network, Liang et al.(2017) pr edicted that the birth of the lightest intermediate mass black holes (LIMBHs; with a final mass of $gtrsim 100,M_odot$) is very likely to be caught by the advanced LIGO/Virgo detectors in their O3 run. The O1 and O2 observation run data, however, strongly favor a cutoff of the BHMF much sharper than the exponential one. In this work we show that a power-law function followed by a sudden drop at $sim 40,M_odot$ by a factor of $sim $a few tens and then a new power-law component extending to $geq 100M_odot$ are consistent with the O1 and O2 observation run data. With this new BHMF, quite a few LIMBH events can be detected in the O3 observation run of advanced LIGO/Virgo. The first LIMBH born in GW190521, an event detected in the early stage of the O3 run of advanced LIGO/Virgo network, provides additional motivation for our hypothesis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا