ترغب بنشر مسار تعليمي؟ اضغط هنا

Controlled synthesis of MoxW1-xTe2 atomic layers with emergent quantum states

88   0   0.0 ( 0 )
 نشر من قبل Ya Deng
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, new states of matter like superconducting or topological quantum states were found in transition metal dichalcogenides (TMDs) and manifested themselves in a series of exotic physical behaviors. Such phenomena have been demonstrated to exist in a series of transition metal tellurides including MoTe2, WTe2 and alloyed MoxW1-xTe2. However, the behaviors in the alloy system have been rarely addressed due to their difficulty in obtaining atomic layers with controlled composition, albeit the alloy offers a great platform to tune the quantum states. Here, we report a facile CVD method to synthesize the MoxW1-xTe2 with controllable thickness and chemical composition ratios. The atomic structure of monolayer MoxW1-xTe2 alloy was experimentally confirmed by scanning transmission electron microscopy (STEM). Importantly, two different transport behaviors including superconducting and Weyl semimetal (WSM) states were observed in Mo-rich Mo0.8W0.2Te2 and W-rich Mo0.2W0.8Te2 samples respectively. Our results show that the electrical properties of MoxW1-xTe2 can be tuned by controlling the chemical composition, demonstrating our controllable CVD growth method is an efficient strategy to manipulate the physical properties of TMDCs. Meanwhile, it provides a perspective on further comprehension and shed light on the design of device with topological multicomponent TMDCs materials.

قيم البحث

اقرأ أيضاً

159 - Song Hao , Junwen Zeng , Tao Xu 2018
Metallic transition metal dichalcogenides (TMDs) have exhibited various exotic physical properties and hold the promise of novel optoelectronic and topological devices applications. However, the synthesis of metallic TMDs is based on gas-phase method s and requires high temperature condition. As an alternative to the gas-phase synthetic approach, lower temperature eutectic liquid-phase synthesis presents a very promising approach with the potential for larger-scale and controllable growth of high-quality thin metallic TMDs single crystals. Herein, we report the first realization of low-temperature eutectic liquid-phase synthesis of type-II Dirac semimetal PtTe2 single crystals with thickness ranging from 2 to 200 nm. The electrical measurement of synthesized PtTe2 reveals a record-high conductivity of as high as 3.3*106 S/m at room temperature. Besides, we experimentally identify the weak antilocalization behavior in the type-II Dirac semimetal PtTe2 for the first time. Furthermore, we develop a simple and general strategy to obtain atomically-thin PtTe2 crystal by thinning as-synthesized bulk samples, which can still retain highly crystalline and exhibits excellent electric conductivity. Our results of controllable and scalable low-temperature eutectic liquid-phase synthesis and layer-by-layer thinning of high-quality thin PtTe2 single crystals offer a simple and general approach for obtaining different thickness metallic TMDs with high-melting point transition metal.
Excitonic insulators (EI) arise from the formation of bound electron-hole pairs (excitons) in semiconductors and provide a solid-state platform for quantum many-boson physics. Strong exciton-exciton repulsion is expected to stabilize condensed superf luid and crystalline phases by suppressing both density and phase fluctuations. Although spectroscopic signatures of EIs have been reported, conclusive evidence for strongly correlated EI states has remained elusive. Here, we demonstrate a strongly correlated spatially indirect two-dimensional (2D) EI ground state formed in transition metal dichalcogenide (TMD) semiconductor double layers. An equilibrium interlayer exciton fluid is formed when the bias voltage applied between the two electrically isolated TMD layers, is tuned to a range that populates bound electron-hole pairs, but not free electrons or holes. Capacitance measurements show that the fluid is exciton-compressible but charge-incompressible - direct thermodynamic evidence of the EI. The fluid is also strongly correlated with a dimensionless exciton coupling constant exceeding 10. We further construct an exciton phase diagram that reveals both the Mott transition and interaction-stabilized quasi-condensation. Our experiment paves the path for realizing the exotic quantum phases of excitons, as well as multi-terminal exciton circuitry for applications.
Hydrogen-rich superhydrides are believed to be very promising high-Tc superconductors as they are expected to mimic characteristics of metallic hydrogen. Recent experiments discovered superhydrides at very high pressures, e.g. FeH5 at 130 GPa and LaH 10 at 170 GPa. With the motivation of discovering new hydrogen-rich high-Tc superconductors at lowest possible pressure, here we report the prediction and experimental synthesis of cerium superhydride CeH9 below 100 GPa in the laser-heated diamond anvil cell. Ab-initio calculations were carried to evaluate the detailed chemistry of the Ce-H system and to understand the structure, stability and superconductivity of CeH9. CeH9 crystallizes in a P63/mmc clathrate structure with a substantially dense 3-dimensional hydrogen sublattice at 100 GPa. These findings shed a new light on the search for superhydrides in close proximity with atomic hydrogen within a feasible pressure range. Discovery of superhydride CeH9 provides a practical platform to further investigate and understand conventional superconductivity in hydrogen rich superhydrides.
The availability of large-area substrates imposes an important constraint on the technological and commercial realization of devices made of layered materials. Aluminum nitride films on silicon are shown to be promising candidate materials as large-a rea substrates for such devices. Herein, the optical contrast of exemplar 2D layers - MoS2and graphene - on AlN films has been investigated as a necessary first step to realize devices on these substrates. Significant contrast enhancements are predicted and observed on AlN films compared to conventional SiO2films. Quantitative estimates of experimental contrast using reflectance spectroscopy show very good agreement with predicted values.
The interplay between magnetism and band topology is a focus of current research on magnetic topological systems. Based on first-principle calculations and symmetry analysis, we reveal multiple intriguing topological states can be realized in a singl e system EuAgAs, controlled by the magnetic ordering. The material is Dirac semimetal in the paramagnetic state, with a pair of accidental Dirac points. Under different magnetic configurations, the Dirac points can evolve into magnetic triply-degenerate points, magnetic linear and double Weyl points, or being gapped out and making the system a topological mirror semimetal characterized by mirror Chern numbers. The change in bulk topology is also manifested in the surface states, including the surface Fermi arcs and surface Dirac cones. In addition, the antiferromagnetic states also feature a nontrivial Z4 index, implying a higher order topology. These results deepen our understanding of magnetic topological states and provide new perspectives for spintronic applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا