ترغب بنشر مسار تعليمي؟ اضغط هنا

The Transition of Polarized Dust Thermal Emission from the Protostellar Envelope to the Disk Scale

83   0   0.0 ( 0 )
 نشر من قبل Ka Ho Lam
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ka Ho Lam




اسأل ChatGPT حول البحث

Polarized dust continuum emission has been observed with ALMA in an increasing number of deeply embedded protostellar systems. It generally shows a sharp transition going from the protostellar envelope to the disk scale, with the polarization fraction typically dropping from ${sim} 5%$ to ${sim} 1%$ and the inferred magnetic field orientations becoming more aligned with the major axis of the system. We quantitatively investigate these observational trends using a sample of protostars in the Perseus molecular cloud and compare these features with a non-ideal MHD disk formation simulation. We find that the gas density increases faster than the magnetic field strength in the transition from the envelope to the disk scale, which makes it more difficult to magnetically align the grains on the disk scale. Specifically, to produce the observed ${sim} 1%$ polarization at ${sim} 100,mathrm{au}$ scale via grains aligned with the B-field, even relatively small grains of $1,mathrm{mu m}$ in size need to have their magnetic susceptibilities significantly enhanced (by a factor of ${sim} 20$) over the standard value, potentially through superparamagnetic inclusions. This requirement is more stringent for larger grains, with the enhancement factor increasing linearly with the grain size, reaching ${sim} 2times 10^4$ for millimeter-sized grains. Even if the required enhancement can be achieved, the resulting inferred magnetic field orientation in the simulation does not show a preference for the major axis, which is inconsistent with the observed pattern. We thus conclude that the observed trends are best described by the model where the polarization on the envelope scale is dominated by magnetically aligned grains and that on the disk scale by scattering.



قيم البحث

اقرأ أيضاً

We present high angular resolution dust polarization and molecular line observations carried out with the Atacama Large Millimeter/submillimeter Array (ALMA) toward the Class 0 protostar Serpens SMM1. By complementing these observations with new pola rization observations from the Submillimeter Array (SMA) and archival data from the Combined Array for Research in Millimeter-wave Astronomy (CARMA) and the James Clerk Maxwell Telescopes (JCMT), we can compare the magnetic field orientations at different spatial scales. We find major changes in the magnetic field orientation between large (~0.1 pc) scales -- where the magnetic field is oriented E-W, perpendicular to the major axis of the dusty filament where SMM1 is embedded -- and the intermediate and small scales probed by CARMA (~1000 AU resolution), the SMA (~350 AU resolution), and ALMA (~140 AU resolution). The ALMA maps reveal that the redshifted lobe of the bipolar outflow is shaping the magnetic field in SMM1 on the southeast side of the source; however, on the northwestern side and elsewhere in the source, low velocity shocks may be causing the observed chaotic magnetic field pattern. High-spatial-resolution continuum and spectral-line observations also reveal a tight (~130 AU) protobinary system in SMM1-b, the eastern component of which is launching an extremely high-velocity, one-sided jet visible in both CO(2-1) and SiO(5-4); however, that jet does not appear to be shaping the magnetic field. These observations show that with the sensitivity and resolution of ALMA, we can now begin to understand the role that feedback (e.g., from protostellar outflows) plays in shaping the magnetic field in very young, star-forming sources like SMM1.
This paper presents the large-scale polarized sky as seen by Planck HFI at 353 GHz, which is the most sensitive Planck channel for dust polarization. We construct and analyse large-scale maps of dust polarization fraction and polarization direction, while taking account of noise bias and possible systematic effects. We find that the maximum observed dust polarization fraction is high (pmax > 18%), in particular in some of the intermediate dust column density (AV < 1mag) regions. There is a systematic decrease in the dust polarization fraction with increasing dust column density, and we interpret the features of this correlation in light of both radiative grain alignment predictions and fluctuations in the magnetic field orientation. We also characterize the spatial structure of the polarization angle using the angle dispersion function and find that, in nearby fields at intermediate latitudes, the polarization angle is ordered over extended areas that are separated by filamentary structures, which appear as interfaces where the magnetic field sky projection rotates abruptly without apparent variations in the dust column density. The polarization fraction is found to be anti-correlated with the dispersion of the polarization angle, implying that the variations are likely due to fluctuations in the 3D magnetic field orientation along the line of sight sampling the diffuse interstellar medium.We also compare the dust emission with the polarized synchrotron emission measured with the Planck LFI, with low-frequency radio data, and with Faraday rotation measurements of extragalactic sources. The two polarized components are globally similar in structure along the plane and notably in the Fan and North Polar Spur regions. A detailed comparison of these three tracers shows, however, that dust and cosmic rays generally sample different parts of the line of sight and confirms that much of the variation observed in the Planck data is due to the 3D structure of the magnetic field.
We report the highest spatial resolution measurement of magnetic fields in M17 using thermal dust polarization taken by SOFIA/HAWC+ centered at 154 $mu$m wavelength. Using the Davis-Chandrasekhar-Fermi method, we found the presence of strong magnetic fields of $980 pm 230;mu$G and $1665 pm 885;mu$G in lower-density (M17-N) and higher-density (M17-S) regions, respectively. The magnetic field morphology in M17-N possibly mimics the fields in gravitational collapse molecular cores while in M17-S the fields run perpendicular to the matter structure and display a pillar and an asymmetric hourglass shape. The mean values of the magnetic field strength are used to determine the Alfvenic Mach numbers ($mathcal{M_A}$) of M17-N and M17-S which turn out to be sub-Alfvenic, or magnetic fields dominate turbulence. We calculate the mass-to-flux ratio, $lambda$, and obtain $lambda=0.07$ for M17-N and $0.28$ for M17-S. The sub-critical values of $lambda$ are in agreement with the lack of massive stars formed in M17. To study dust physics, we analyze the relationship between the dust polarization fraction, $p$, and the thermal emission intensity, $I$, gas column density, $N({rm H_2})$, and dust temperature, $T_{rm d}$. The polarization fraction decreases with intensity as $I^{-alpha}$ with $alpha = 0.51$. The polarization fraction also decreases with increasing $N(rm H_{2})$, which can be explained by the decrease of grain alignment by radiative torques (RATs) toward denser regions with a weaker radiation field and/or tangling of magnetic fields. The polarization fraction tends to increase with $T_{rm d}$ first and then decreases when $T_ {rm d} > 50$ K. The latter feature seen in the M17-N, where the gas density changes slowly with $T_{d}$, is consistent with the RAT disruption effect.
How and when in the star formation sequence do dust grains start to grow into pebbles is a cornerstone question to both star and planet formation. We compute the polarized radiative transfer from a model solar-type protostellar core, using the POLARI S code, aligning the dust grains with the local magnetic field, following the radiative torques (RATs) theory. We test the dependency of the resulting dust polarized emission with the maximum grain size of the dust size distribution at the envelope scale, from amax = 1 micron to 50 micron. Our work shows that, in the framework of RAT alignment, large dust grains are required to produce polarized dust emission at levels similar to those currently observed in solar-type protostellar envelopes at millimeter wavelengths. Considering the current theoretical dificulties to align a large fraction of small ISM-like grains in the conditions typical of protostellar envelopes, our results suggest that grain growth (typically > 10 micron) might have already significantly progressed at scales 100-1000 au in the youngest objects, observed less than 10^5 years after the onset of collapse. Observations of dust polarized emission might open a new avenue to explore dust pristine properties and describe, for example, the initial conditions for the formation of planetesimals.
[abridged] The interstellar medium is now widely recognized to display features ascribable to magnetized turbulence. With the public release of Planck data and the current balloon-borne and ground-based experiments, the growing amount of data tracing the polarized thermal emission from Galactic dust in the submillimetre provides choice diagnostics to constrain the properties of this magnetized turbulence. We aim to constrain these properties in a statistical way, focusing in particular on the power spectral index of the turbulent component of the interstellar magnetic field in a diffuse molecular cloud, the Polaris Flare. We present an analysis framework which is based on simulating polarized thermal dust emission maps using model dust density (proportional to gas density) and magnetic field cubes, integrated along the line of sight, and comparing these statistically to actual data. The model fields are derived from fBm processes, which allow a precise control of their one- and two-point statistics. We explore the nine-dimensional parameter space of these models through a MCMC analysis, which yields best-fitting parameters and associated uncertainties. We find that the power spectrum of the turbulent component of the magnetic field in the Polaris Flare molecular cloud scales with wavenumber as a power law with a spectral index $2.8pm 0.2$. It complements a uniform field whose norm in the POS is approximately twice the norm of the fluctuations of the turbulent component. The density field is well represented by a log-normally distributed field with a mean gas density $40,mathrm{cm}^{-3}$ and a power spectrum with as spectral index $1.7^{+0.4}_{-0.3}$. The agreement between the Planck data and the simulated maps for these best-fitting parameters is quantified by a $chi^2$ value that is only slightly larger than unity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا