ﻻ يوجد ملخص باللغة العربية
We investigate the spectra of adjacency matrices of multiplex networks under random matrix theory (RMT) framework. Through extensive numerical experiments, we demonstrate that upon multiplexing two random networks, the spectra of the combined multiplex network exhibit superposition of two Gaussian orthogonal ensemble (GOE)s for very small multiplexing strength followed by a smooth transition to the GOE statistics with an increase in the multiplexing strength. Interestingly, randomness in the connection architecture, introduced by random rewiring to 1D lattice, of at least one layer may govern nearest neighbor spacing distribution (NNSD) of the entire multiplex network, and in fact, can drive to a transition from the Poisson to the GOE statistics or vice versa. Notably, this transition transpires for a very small number of the random rewiring corresponding to the small-world transition. Ergo, only one layer being represented by the small-world network is enough to yield GOE statistics for the entire multiplex network. Spectra of adjacency matrices of underlying interaction networks have been contemplated to be related with dynamical behaviour of the corresponding complex systems, the investigations presented here have implications in achieving better structural and dynamical control to the systems represented by multiplex networks against structural perturbation in only one of the layers.
We analyze complex networks under random matrix theory framework. Particularly, we show that $Delta_3$ statistic, which gives information about the long range correlations among eigenvalues, provides a qualitative measure of randomness in networks. A
We study spectral behavior of sparsely connected random networks under the random matrix framework. Sub-networks without any connection among them form a network having perfect community structure. As connections among the sub-networks are introduced
A continuous Markovian model for truncated Levy random walks is proposed. It generalizes the approach developed previously by Lubashevsky et al. Phys. Rev. E 79, 011110 (2009); 80, 031148 (2009), Eur. Phys. J. B 78, 207 (2010) allowing for nonlinear
Random walks constitute a fundamental mechanism for many dynamics taking place on complex networks. Besides, as a more realistic description of our society, multiplex networks have been receiving a growing interest, as well as the dynamical processes
Governments and enterprises strongly rely on incentives to generate favorable outcomes from social and strategic interactions between individuals. The incentives are usually modeled by payoffs in evolutionary games, such as the prisoners dilemma or t