ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing the Progenitors of Type Ia Supernovae using Circumstellar Material Interaction Signatures

69   0   0.0 ( 0 )
 نشر من قبل Peter Clark
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This work aims to study different probes of Type Ia supernova progenitors that have been suggested to be linked to the presence of circumstellar material (CSM). In particular, we have investigated, for the first time, the link between narrow blueshifted NaID absorption profiles and the presence and strength of the broad high-velocity CaII near infrared triplet absorption features seen in Type Ia supernovae around maximum light. With the probes exploring different distances from the supernova; NaID > 10$^{17}$cm, high-velocity CaII features < 10$^{15}$cm. For this, we have used a new intermediate-resolution X-shooter spectral sample of 15 Type Ia supernovae. We do not identify a link between these two probes, implying either that, one (or both) is not physically related to the presence of CSM or that the occurrence of CSM at the distance explored by one probe is not linked to its presence at the distance probed by the other. However, the previously identified statistical excess in the presence of blueshifted (over redshifted) NaID absorption is confirmed in this sample at high significance and is found to be stronger in Type Ia supernovae hosted by late-type galaxies. This excess is difficult to explain as being from an interstellar-medium origin as has been suggested by some recent modelling, as such an origin is not expected to show a bias for blueshifted absorption. However, a circumstellar origin for these features also appears unsatisfactory based on our new results given the lack of link between the two probes of CSM investigated.


قيم البحث

اقرأ أيضاً

Type Ia supernovae are key tools for measuring distances on a cosmic scale. They are generally thought to be the thermonuclear explosion of an accreting white dwarf in a close binary system. The nature of the mass donor is still uncertain. In the sin gle-degenerate model it is a main-sequence star or an evolved star, whereas in the double-degenerate model it is another white dwarf. We show that the velocity structure of absorbing material along the line of sight to 35 type Ia supernovae tends to be blueshifted. These structures are likely signatures of gas outflows from the supernova progenitor systems. Thus many type Ia supernovae in nearby spiral galaxies may originate in single-degenerate systems.
A key tracer of the elusive progenitor systems of Type Ia supernovae (SNe Ia) is the detection of narrow blueshifted time-varying Na I D absorption lines, interpreted as evidence of circumstellar material (CSM) surrounding the progenitor system. The origin of this material is controversial, but the simplest explanation is that it results from previous mass loss in a system containing a white dwarf and a non-degenerate companion star. We present new single-epoch intermediate-resolution spectra of 17 low-redshift SNe Ia taken with XShooter on the ESO Very Large Telescope. Combining this sample with events from the literature, we confirm an excess (~20 per cent) of SNe Ia displaying blueshifted narrow Na I D absorption features compared to non-blueshifted Na I D features. The host galaxies of SNe Ia displaying blueshifted absorption profiles are skewed towards later-type galaxies, compared to SNe Ia that show no Na I D absorption, and SNe Ia displaying blueshifted narrow Na I D absorption features have broader light curves. The strength of the Na I D absorption is stronger in SNe Ia displaying blueshifted Na I D absorption features than those without blueshifted features, and the strength of the blueshifted Na I D is correlated with the B-V colour of the SN at maximum light. This strongly suggests the absorbing material is local to the SN. In the context of the progenitor systems of SNe Ia, we discuss the significance of these findings and other recent observational evidence on the nature of SN Ia progenitors. We present a summary that suggests there are at least two distinct populations of normal, cosmologically useful SNe Ia.
We review all the models proposed for the progenitor systems of Type Ia supernovae and discuss the strengths and weaknesses of each scenario when confronted with observations. We show that all scenarios encounter at least a few serious diffculties, i f taken to represent a comprehensive model for the progenitors of all Type Ia supernovae (SNe Ia). Consequently, we tentatively conclude that there is probably more than one channel leading SNe Ia. While the single-degenerate scenario (in which a single white dwarf accretes mass from a normal stellar companion) has been studied in some detail, the other scenarios will need a similar level of scrutiny before any firm conclusions can be drawn.
The mechanism for the early-phase blue and excessive emission within the first few days, reported so far for a few type Ia supernovae (SNe Ia), has been suggested to be interaction of the SN ejecta either with a non-degenerate companion star or circu mstellar media (CSM). Recently, another mechanism has been suggested within the context of the He detonation-triggered SN scenario (i.e., double detonation scenario or He-ignited violent merger), in which the radioactive isotopes in the outermost layer of the SN ejecta produce the early emission. In this paper, we investigate properties of the early-phase excessive emission predicted by these different scenarios. The He detonation scenario shows different behaviors in the early flash than the companion/CSM interaction scenarios. Especially clear diagnostics is provided once the behaviors in the UV and in the optical are combined. The spectra synthesized for the He detonation scenario are characterized by the absorptions due to the He detonation products, which especially develop in the decay phase. We further expect a relation between the properties of the early-phase flash and those of the maximum SN emission, in a way the brighter and slower initial flash is accompanied by a more substantial effect of the additional absorptions (and reddening). This relation, however, should be considered together with the maximum luminosity of the SN, since the larger luminosity suppresses the effect of the additional absorption. With these expected features, we address the possible origins of the observed excessive early-phase emission for a few SNe.
74 - D. Andrew Howell 2001
We find that spectroscopically peculiar subluminous SNe Ia come from an old population. Of the sixteen subluminous SNe Ia known, ten are found in E/S0 galaxies, and the remainder are found in early-type spirals. The probability that this is a chance occurrence is only 0.2%. The finding that subluminous SNe Ia are associated with an older stellar population indicates that for a sufficiently large lookback time (already accessible in current high redshift searches) they will not be found. Due to a scarcity in old populations, hydrogen and helium main sequence stars and He red giant stars that undergo Roche lobe overflow are unlikely to be the progenitors of subluminous SNe Ia. Earlier findings that overluminous SNe Ia (dM15(B) < 0.95) come from a young progenitor population are confirmed. The fact that subluminous SNe Ia and overluminous SNe Ia come from different progenitor populations and also have different properties is a prediction of the CO white dwarf merger progenitor scenario.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا