ﻻ يوجد ملخص باللغة العربية
We investigate the $B+L$ violation process by performing three-dimensional lattice simulations in an electroweak theory with first-order phase transition and the electroweak sphaleron decay. The simulation results indicate that the Chern-Simons number changes along with the helical magnetic field production when the sphaleron decay occurs. Our study suggests that, for the electroweak phase transition with nucleation rate being smaller than $sim mathcal{O}(10)$, the helical magnetic field with the fractional magnetic helicity $epsilon_Mleq 0.2$ can be probed by Cherenkov Telescope Array through the intergalactic magnetic field measurements. Based on our numerical results, we suggest a method to probe the baryon asymmetry generation of the Universe, which is a general consequence of the electroweak sphaleron process, through the astronomical observation of the corresponding helical magnetic field.
Report of the CF6 Working Group at Snowmass 2013. Topics addressed include ultra-high energy cosmic rays, neutrinos, gamma rays, baryogenesis, and experiments probing the fundamental nature of spacetime.
The direct detection of gravitational waves offers an exciting new window onto our Universe. At the same time, multiple observational evidence and theoretical considerations motivate the presence of physics beyond the Standard Model. In this thesis,
Recent years have seen increased theoretical and experimental effort towards the first-ever detection of cosmic-ray antideuterons, in particular as an indirect signature of dark matter annihilation or decay. In contrast to indirect dark matter search
We show that gravitational wave emission from neutron star binaries can be used to discover any generic long-ranged muonic force due to the large inevitable abundance of muons inside neutron stars. As a minimal consistent example, we focus on a gauge
The rare decay B to K* (to K pi) mu+ mu- is regarded as one of the crucial channels for B physics since its angular distribution gives access to many observables that offer new important tests of the Standard Model and its extensions. We point out a