ﻻ يوجد ملخص باللغة العربية
In this paper, we introduce adaptive neuron enhancement (ANE) method for the best least-squares approximation using two-layer ReLU neural networks (NNs). For a given function f(x), the ANE method generates a two-layer ReLU NN and a numerical integration mesh such that the approximation accuracy is within the prescribed tolerance. The ANE method provides a natural process for obtaining a good initialization which is crucial for training nonlinear optimization problems. Numerical results of the ANE method are presented for functions of two variables exhibiting either intersecting interface singularities or sharp interior layers.
In this paper, we study adaptive neuron enhancement (ANE) method for solving self-adjoint second-order elliptic partial differential equations (PDEs). The ANE method is a self-adaptive method generating a two-layer spline NN and a numerical integrati
This paper studies least-squares ReLU neural network method for solving the linear advection-reaction problem with discontinuous solution. The method is a discretization of an equivalent least-squares formulation in the set of neural network function
We introduced the least-squares ReLU neural network (LSNN) method for solving the linear advection-reaction problem with discontinuous solution and showed that the method outperforms mesh-based numerical methods in terms of the number of degrees of f
Neural Networks (NNs) are the method of choice for building learning algorithms. Their popularity stems from their empirical success on several challenging learning problems. However, most scholars agree that a convincing theoretical explanation for
We consider best approximation problems in a nonlinear subset $mathcal{M}$ of a Banach space of functions $(mathcal{V},|bullet|)$. The norm is assumed to be a generalization of the $L^2$-norm for which only a weighted Monte Carlo estimate $|bullet|_n