ﻻ يوجد ملخص باللغة العربية
Many of the molecular mechanisms underlying the pathological aggregation of proteins observed in neurodegenerative diseases are still not fully understood. Among the diseases associated with protein aggregates, for example, Amyotrophic Lateral Sclerosis (ALS) is of relevant importance. Although understanding the processes that cause the disease is still an open challenge, its relationship with protein aggregation is widely known. In particular, human TDP-43, an RNA/DNA binding protein, is a major component of pathological cytoplasmic inclusions described in ALS patients. The deposition of the phosphorylated full-length TDP-43 in spinal cord cells has been widely studied, and it has been shown that the brain cortex presents an accumulation of phosphorylated C-terminal fragments (CTFs). Even if it is debated whether CTFs represent a primary cause of ALS, they are a hallmark of TDP-43 related neurodegeneration in the brain. Here, we investigate the CTFs aggregation process, providing a possible computational model of interaction based on the evaluation of shape complementarity at the interfaces. To this end, extensive Molecular Dynamics (MD) simulations were conducted for different types of fragments with the aim of exploring the equilibrium configurations. Adopting a newly developed approach based on Zernike polynomials, for finding complementary regions of the molecular surface, we sampled a large set of exposed portions of the molecular surface of CTFs structures as obtained from MD simulations. The analysis proposes a set of possible associations between the CTFs, which could drive the aggregation process of the CTFs.
Amyotrophic lateral sclerosis (ALS) is the most common adult motor neuron disease, causing motor neuron degeneration, muscle atrophy, paralysis, and death. Despite this degenerative process, a stable hypermetabolic state has been observed in a large
In multi-resolution simulations, different system components are simultaneously modelled at different levels of resolution, these being smoothly coupled together. In the case of enzyme systems, computationally expensive atomistic detail is needed in
The early steps of photosynthesis involve the photo-excitation of reaction centres (RCs) and light-harvesting (LH) units. Here, we show that the --historically overlooked-- excitonic delocalisation across RC and LH pigments results in a redistributio
We discuss a polymer model for the 3D organization of human chromosomes. A chromosome is represented by a string of beads, with each bead being colored according to 1D bioinformatic data (e.g., chromatin state, histone modification, GC content). Indi
Considering a multi-pathway structure in a light-harvesting complex of photosynthesis, we investigate the role of energy-level mismatches between antenna molecules in transferring the absorbed energy to a reaction center. We find a condition in which