ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-neutrino double-beta decay matrix elements based on relativistic nuclear energy density functional

66   0   0.0 ( 0 )
 نشر من قبل Nils Paar Dr.
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The nuclear matrix elements (NMEs) for two-neutrino double-beta decay ($2 ubetabeta$) are studied in the framework of the relativistic nuclear energy density functional. The properties of nuclei involved in the decay are obtained using relativistic Hartree-Bogoliubov model and relevant nuclear transitions are described using the relativistic proton-neutron quasiparticle random phase approximation (pn-ReQRPA). Three effective interactions have been employed, including density-dependent meson-exchange and point coupling interactions, supplemented with nuclear pairing correlations. The $2 ubetabeta$ matrix elements and half-lives are calculated for several nuclides experimentally known to undergo this kind of decay: $^{48}$Ca, $^{76}$Ge, $^{82}$Se, $^{96}$Zr, $^{100}$Mo, $^{116}$Cd, and $^{128}$Te. The model dependence of the NMEs and their sensitivity on the isoscalar pairing strength $V_0$ is investigated, and the optimized value of this parameter is determined. The results of the present study represent an important benchmark for the future applications of the relativistic framework in studies of neutrinoless double-beta decay.

قيم البحث

اقرأ أيضاً

82 - Y. Iwata , N. Shimizu , Y. Utsuno 2014
Large-scale shell model calculations including two major shells are carried out, and the ingredients of nuclear matrix element for two-neutrino double beta decay are investigated. Based on the comparison between the shell model calculations accountin g only for one major shell ($pf$-shell) and those for two major shells ($sdpf$-shell), the effect due to the excitation across the two major shells is quantitatively evaluated.
78 - Jonathan Engel 2015
Recent progress in nuclear-structure theory has been dramatic. I describe recent and future applications of ab initio calculations and the generator coordinate method to double-beta decay. I also briefly discuss the old and vexing problem of the reno rmalization of the weak nuclear axial-vector coupling constant in medium and plans to resolve it.
254 - G. Kruzic , T. Oishi , D. Vale 2020
Magnetic dipole (M1) excitations build not only a fundamental mode of nucleonic transitions, but they are also relevant for nuclear astrophysics applications. We have established a theory framework for description of M1 transitions based on the relat ivistic nuclear energy density functional. For this purpose the relativistic quasiparticle random phase approximation (RQRPA) is established using density dependent point coupling interaction DD-PC1, supplemented with the isovector-pseudovector interaction channel in order to study unnatural parity transitions. The introduced framework has been validated using the M1 sum rule for core-plus-two-nucleon systems, and employed in studies of the spin, orbital, isoscalar and isovector M1 transition strengths, that relate to the electromagnetic probe, in magic nuclei $^{48}$Ca and $^{208}$Pb, and open shell nuclei $^{42}$Ca and $^{50}$Ti. In these systems, the isovector spin-flip M1 transition is dominant, mainly between one or two spin-orbit partner states. It is shown that pairing correlations have a significant impact on the centroid energy and major peak position of the M1 mode. The M1 excitations could provide an additional constraint to improve nuclear energy density functionals in the future studies.
76 - J. M. Yao 2020
Accurate nuclear matrix elements (NMEs) for neutrinoless double beta decays of candidate nuclei are important for the design and interpretation of future experiments. Significant progress has been made in the modeling of these NMEs from first princip les. The NME for 48Ca shows a good agreement among three different ab initio calculations starting from the same nuclear interaction constructed within the chiral EFT and the same decay operator. These studies open the door to ab initio calculations of the matrix elements for the decay of heavier nuclei such as 76Ge, 130Te, and 136Xe. The ultimate goal is the computation of NMEs in many-body calculations with controllable approximations, using nuclear interactions and weak transition operators derived consistently from chiral EFT. We are expecting more progress towards this goal in the near future.
A new generation of neutrinoless double beta decay experiments with improved sensitivity is currently under design and construction. They will probe inverted hierarchy region of the neutrino mass pattern. There is also a revived interest to the reson ant neutrinoless double-electron capture, which has also a potential to probe lepton number conservation and to investigate the neutrino nature and mass scale. The primary concern are the nuclear matrix elements. Clearly, the accuracy of the determination of the effective Majorana neutrino mass from the measured 0 ubetabeta-decay half-life is mainly determined by our knowledge of the nuclear matrix elements. We review recent progress achieved in the calculation of 0 ubetabeta and 0 u ECEC nuclear matrix elements within the quasiparticle random phase approximation. A considered self-consistent approach allow to derive the pairing, residual interactions and the two-nucleon short-range correlations from the same modern realistic nucleon-nucleon potentials. The effect of nuclear deformation is taken into account. A possibility to evaluate 0 ubetabeta-decay matrix elements phenomenologically is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا