ﻻ يوجد ملخص باللغة العربية
Low Density Points (LDPs, citet{2019ApJ...874....7D}), obtained by removing high-density regions of observed galaxies, can trace the Large-Scale Structures (LSSs) of the universe. In particular, it offers an intriguing opportunity to detect weak gravitational lensing from low-density regions. In this work, we investigate tomographic cross-correlation between Planck CMB lensing maps and LDP-traced LSSs, where LDPs are constructed from the DR8 data release of the DESI legacy imaging survey, with about $10^6$-$10^7$ galaxies. We find that, due to the large sky coverage (20,000 deg$^2$) and large redshift depth ($zleq 1.2$), a significant detection ($10sigma$--$30sigma$) of the CMB lensing-LDP cross-correlation in all six redshift bins can be achieved, with a total significance of $sim 53sigma$ over $ ellle1024$. Moreover, the measurements are in good agreement with a theoretical template constructed from our numerical simulation in the WMAP 9-year $Lambda$CDM cosmology. A scaling factor for the lensing amplitude $A_{rm lens}$ is constrained to $A_{rm lens}=1pm0.12$ for $z<0.2$, $A_{rm lens}=1.07pm0.07$ for $0.2<z<0.4$ and $A_{rm lens}=1.07pm0.05$ for $0.4<z<0.6$, with the r-band absolute magnitude cut of $-21.5$ for LDP selection. A variety of tests have been performed to check the detection reliability, against variations in LDP samples and galaxy magnitude cuts, masks, CMB lensing maps, multipole $ell$ cuts, sky regions, and photo-z bias. We also perform a cross-correlation measurement between CMB lensing and galaxy number density, which is consistent with the CMB lensing-LDP cross-correlation. This work therefore further convincingly demonstrates that LDP is a competitive tracer of LSS.
Cosmic Microwave Background (CMB) is a powerful probe to study the early universe and various cosmological models. Weak gravitational lensing affects the CMB by changing its power spectrum, but meanwhile, it also carries information about the distrib
In recent years, many gamma-ray sources have been identified, yet the unresolved component hosts valuable information on the faintest emission. In order to extract it, a cross-correlation with gravitational tracers of matter in the Universe has been
We present the first study of cross-correlation between Cosmic Microwave Background (CMB) gravitational lensing potential map measured by the $Planck$ satellite and $zgeq 0.8$ galaxies from the photometric redshift catalogues from Herschel Extragalac
We report the measurement of the angular power spectrum of cross-correlation between the unresolved component of the Fermi-LAT gamma-ray sky-maps and the CMB lensing potential map reconstructed by the Planck satellite. The matter distribution in the
We measure the cross-correlation of cosmic microwave background lensing convergence maps derived from Atacama Cosmology Telescope data with galaxy lensing convergence maps as measured by the Canada-France-Hawaii Telescope Stripe 82 Survey. The CMB-ga