ترغب بنشر مسار تعليمي؟ اضغط هنا

Straintronics: Manipulating the Magnetization of Magnetostrictive Nanomagnets with Strain for Energy-Efficient Applications

50   0   0.0 ( 0 )
 نشر من قبل Supriyo Bandyopadhyay
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The desire to perform information processing, computation, communication, signal generation and related tasks, while dissipating as little energy as possible, has inspired many ideas and paradigms. One of the most powerful among them is the notion of using magnetostrictive nanomagnets as the primitive units of the hardware platforms and manipulating their magnetizations with electrically generated static or time varying mechanical strain to elicit myriad functionalities. This approach has two advantages. First, information can be retained in the devices after powering off since the nanomagnets are non-volatile unlike charge-based devices such as transistors. Second, the energy expended to perform a given task is exceptionally low since it takes very little energy to alter magnetization states with strain. This field is now known as straintronics, in analogy with electronics, spintronics, valleytronics, etc. We review the recent advances and trends in straintronics, including digital information processing (logic), information storage (memory), domain wall devices operated with strain, control of skyrmions with strain, non-Boolean computing and machine learning with straintronics, signal generation (microwave sources) and communication (ultra-miniaturized acoustic and electromagnetic antennas) implemented with strained nanomagnets, hybrid straintronics-magnonics, and interaction between phonons and magnons in straintronic systems. We identify key challenges and opportunities, and lay out pathways to advance this field to the point where it might become a mainstream technology for energy-efficient systems.



قيم البحث

اقرأ أيضاً

In a two-dimensional arrangement of closely spaced elliptical nanomagnets with in-plane magnetic anisotropy, whose major axes are aligned along columns and minor axes along rows, dipole coupling will make the magnetic ordering ferromagnetic along the columns and anti-ferromagnetic along the rows. Noise and other perturbations can drive the system out of this ground state configuration and pin it in a metastable state where the magnetization orientations will not follow this pattern. Internal energy barriers, sufficiently larger than the thermal energy kT, will prevent the system from leaving the metastable state and decaying spontaneously to the ground state. These barriers can be temporarily eroded by globally straining the nanomagnets with time-varying strain if the nanomagnets are magnetostrictive, which will allow the system to return to ground state after strain is removed. This is a hardware emulation of simulated annealing in an interacting many body system. Here, we demonstrate this function experimentally.
Probabilistic (p-) bits implemented with low energy barrier nanomagnets (LBMs) have recently gained attention because they can be leveraged to perform some computational tasks very efficiently. Although more error-resilient than Boolean computing, p- bit based computing employing LBMs is, however, not completely immune to defects and device-to-device variations. In some tasks (e.g. binary stochastic neurons for machine learning and p-bits for population coding), extended defects, such as variation of the LBM thickness over a significant fraction of the surface, can impair functionality. In this paper, we have examined if unavoidable geometric device-to-device variations can have a significant effect on one of the most critical requirements for probabilistic computing, namely the ability to program probability with an external agent, such as a spin-polarized current injected into the LBM. We found that the programming ability is fortunately not lost due to reasonable device-to-device variations. The little variation in the probability versus current characteristic that reasonable device variability causes can be suppressed further by increasing the spin polarization of the current. This shows that probabilistic computing with LBMs is robust against small geometric variations, and hence will be scalable to a large number of p-bits.
When magnets are fashioned into nanoscale elements, they exhibit a wide variety of phenomena replete with rich physics and the lure of tantalizing applications. In this topical review, we discuss some of these phenomena, especially those that have co me to light recently, and highlight their potential applications. We emphasize what drives a phenomenon, what undergirds the dynamics of the system that exhibits the phenomenon, how the dynamics can be manipulated, and what specific features can be harnessed for technological advances. For the sake of balance, we point out both advantages and shortcomings of nanomagnet based devices and systems predicated on the phenomena we discuss. Where possible, we chart out paths for future investigations that can shed new light on an intriguing phenomenon and/or facilitate both traditional and non-traditional applications.
Strain engineering offers unique control to manipulate the electronic band structure of two-dimensional materials (2DMs) resulting in an effective and continuous tuning of the physical properties. Ad-hoc straining 2D materials has demonstrated novel devices including efficient photodetectors at telecommunication frequencies, enhanced-mobility transistors, and on-chip single photon source, for example. However, in order to gain insights into the underlying mechanism required to enhance the performance of the next-generation devices with strain(op)tronics, it is imperative to understand the nano- and microscopic properties as a function of a strong non-homogeneous strain. Here, we study the strain-induced variation of local conductivity of a few-layer transition-metal-dichalcogenide using a conductive atomic force microscopy. We report a novel strain characterization technique by capturing the electrical conductivity variations induced by local strain originating from surface topography at the nanoscale, which allows overcoming limitations of existing optical spectroscopy techniques. We show that the conductivity variations parallel the strain deviations across the geometry predicted by molecular dynamics simulation. These results substantiate a variation of the effective mass and surface charge density by .026 me/% and .03e/% of uniaxial strain, respectively. Furthermore, we show and quantify how a gradual reduction of the conduction band minima as a function of tensile strain explains the observed reduced effective Schottky barrier height. Such spatially-textured electronic behavior via surface topography induced strain variations in atomistic-layered materials at the nanoscale opens up new opportunities to control fundamental material properties and offers a myriad of design and functional device possibilities for electronics, nanophotonics, flextronics, or smart cloths.
71 - Simon Mendisch 2021
Comprehensive control of the domain wall nucleation process is crucial for spin-based emerging technologies ranging from random-access and storage-class memories over domain-wall logic concepts to nanomagnetic logic. In this work, focused Ga+ ion-irr adiation is investigated as an effective means to control domain-wall nucleation in Ta/CoFeB/MgO nanostructures. We show that analogously to He+ irradiation, it is not only possible to reduce the perpendicular magnetic anisotropy but also to increase it significantly, enabling new, bidirectional manipulation schemes. First, the irradiation effects are assessed on film level, sketching an overview of the dose-dependent changes in the magnetic energy landscape. Subsequent time-domain nucleation characteristics of irradiated nanostructures reveal substantial increases in the anisotropy fields but surprisingly small effects on the measured energy barriers, indicating shrinking nucleation volumes. Spatial control of the domain wall nucleation point is achieved by employing focused irradiation of pre-irradiated magnets, with the diameter of the introduced circular defect controlling the coercivity. Special attention is given to the nucleation mechanisms, changing from a Stoner-Wohlfarth particles coherent rotation to depinning from an anisotropy gradient. Dynamic micromagnetic simulations and related measurements are used in addition to model and analyze this depinning-dominated magnetization reversal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا