ﻻ يوجد ملخص باللغة العربية
In mm-wave networks, cell sizes are small due to high path and penetration losses. Mobiles need to frequently switch softly from one cell to another to preserve network connections and context. Each soft handover involves the mobile performing directional neighbor cell search, tracking cell beam, completing cell access request, and finally, context switching. The mobile must independently discover cell beams, derive timing information, and maintain beam alignment throughout the process to avoid packet loss and hard handover. We propose Silent tracker which enables a mobile to reliably manage handover events by maintaining an aligned beam until the successful handover completion. It is entirely in-band beam mechanism that does not need any side information. Experimental evaluations show that Silent Tracker maintains the mobiles receive beam aligned to the potential target base stations transmit beam till the successful conclusion of handover in three mobility scenarios: human walk, device rotation, and 20 mph vehicular speed.
Millimeter-wave (mmWave) communication is considered as a key enabler of ultra-high data rates in the future cellular and wireless networks. The need for directional communication between base stations (BSs) and users in mmWave systems, that is achie
In closed-loop wireless control systems, the state-of-the-art approach prescribes that a controller receives by wireless communications the individual sensor measurements, and then sends the computed control signal to the actuators. We propose an ove
Radio access network (RAN) slicing is an important part of network slicing in 5G. The evolving network architecture requires the orchestration of multiple network resources such as radio and cache resources. In recent years, machine learning (ML) tec
Wide Area Cyber-Physical Systems (WA-CPSs) are a class of control systems that integrate low-powered sensors, heterogeneous actuators and computer controllers into large infrastructure that span multi-kilometre distances. Current wireless communicati
In this paper, the adoption of an intelligent reflecting surface (IRS) for multiple single-antenna source terminal (ST)-DT pairs in two-hop networks is investigated. Different from the previous studies on IRS that merely focused on tuning the reflect