ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Kernel and Related Problems in Interval Digraphs

63   0   0.0 ( 0 )
 نشر من قبل Mathew Francis
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Given a digraph $G$, a set $Xsubseteq V(G)$ is said to be absorbing set (resp. dominating set) if every vertex in the graph is either in $X$ or is an in-neighbour (resp. out-neighbour) of a vertex in $X$. A set $Ssubseteq V(G)$ is said to be an independent set if no two vertices in $S$ are adjacent in $G$. A kernel (resp. solution) of $G$ is an independent and absorbing (resp. dominating) set in $G$. We explore the algorithmic complexity of these problems in the well known class of interval digraphs. A digraph $G$ is an interval digraph if a pair of intervals $(S_u,T_u)$ can be assigned to each vertex $u$ of $G$ such that $(u,v)in E(G)$ if and only if $S_ucap T_v eqemptyset$. Many different subclasses of interval digraphs have been defined and studied in the literature by restricting the kinds of pairs of intervals that can be assigned to the vertices. We observe that several of these classes, like interval catch digraphs, interval nest digraphs, adjusted interval digraphs and chronological interval digraphs, are subclasses of the more general class of reflexive interval digraphs -- which arise when we require that the two intervals assigned to a vertex have to intersect. We show that all the problems mentioned above are efficiently solvable, in most of the cases even linear-time solvable, in the class of reflexive interval digraphs, but are APX-hard on even the very restricted class of interval digraphs called point-point digraphs, where the two intervals assigned to each vertex are required to be degenerate, i.e. they consist of a single point each. The results we obtain improve and generalize several existing algorithms and structural results for subclasses of reflexive interval digraphs.



قيم البحث

اقرأ أيضاً

We unify several seemingly different graph and digraph classes under one umbrella. These classes are all broadly speaking different generalizations of interval graphs, and include, in addition to interval graphs, also adjusted interval digraphs, thre shold graphs, complements of threshold tolerance graphs (known as `co-TT graphs), bipartite interval containment graphs, bipartite co-circular arc graphs, and two-directional orthogonal ray graphs. (The last three classes coincide, but have been investigated in different contexts.) This common view is made possible by introducing loops. We also show that all the above classes are united by a common ordering characterization, the existence of a min ordering. We propose a common generalization of all these graph and digraph classes, namely signed-interval digraphs, and show that they are precisely the digraphs that are characterized by the existence of a min ordering. We also offer an alternative geometric characterization of these digraphs. For most of the above example graph and digraph classes, we show that they are exactly those signed-interval digraphs that satisfy a suitable natural restriction on the digraph, like having all loops, or having a symmetric edge-set, or being bipartite. (For instance co-TT graphs are precisely those signed-interval digraphs that have each edge symmetric.) We also offer some discussion of recognition algorithms and characterizations, saving the details for future papers.
The main goal of this work is to establish a bijection between Dyck words and a family of Eulerian digraphs. We do so by providing two algorithms implementing such bijection in both directions. The connection between Dyck words and Eulerian digraphs exploits a novel combinatorial structure: a binary matrix, we call Dyck matrix, representing the cycles of an Eulerian digraph.
A digraph $D=(V, A)$ has a good pair at a vertex $r$ if $D$ has a pair of arc-disjoint in- and out-branchings rooted at $r$. Let $T$ be a digraph with $t$ vertices $u_1,dots , u_t$ and let $H_1,dots H_t$ be digraphs such that $H_i$ has vertices $u_{i ,j_i}, 1le j_ile n_i.$ Then the composition $Q=T[H_1,dots , H_t]$ is a digraph with vertex set ${u_{i,j_i}mid 1le ile t, 1le j_ile n_i}$ and arc set $$A(Q)=cup^t_{i=1}A(H_i)cup {u_{ij_i}u_{pq_p}mid u_iu_pin A(T), 1le j_ile n_i, 1le q_ple n_p}.$$ When $T$ is arbitrary, we obtain the following result: every strong digraph composition $Q$ in which $n_ige 2$ for every $1leq ileq t$, has a good pair at every vertex of $Q.$ The condition of $n_ige 2$ in this result cannot be relaxed. When $T$ is semicomplete, we characterize semicomplete compositions with a good pair, which generalizes the corresponding characterization by Bang-Jensen and Huang (J. Graph Theory, 1995) for quasi-transitive digraphs. As a result, we can decide in polynomial time whether a given semicomplete composition has a good pair rooted at a given vertex.
In this short note, we show two NP-completeness results regarding the emph{simultaneous representation problem}, introduced by Lubiw and Jampani. The simultaneous representation problem for a given class of intersection graphs asks if some $k$ graphs can be represented so that every vertex is represented by the same interval in each representation. We prove that it is NP-complete to decide this for the class of interval and circular-arc graphs in the case when $k$ is a part of the input and graphs are not in a sunflower position.
A matching $M$ in a graph $G$ is said to be uniquely restricted if there is no other matching in $G$ that matches the same set of vertices as $M$. We describe a polynomial-time algorithm to compute a maximum cardinality uniquely restricted matching i n an interval graph, thereby answering a question of Golumbic et al. (Uniquely restricted matchings, M. C. Golumbic, T. Hirst and M. Lewenstein, Algorithmica, 31:139--154, 2001). Our algorithm actually solves the more general problem of computing a maximum cardinality strong independent set in an interval nest digraph, which may be of independent interest. Further, we give linear-time algorithms for computing maximum cardinality uniquely restricted matchings in proper interval graphs and bipartite permutation graphs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا