ﻻ يوجد ملخص باللغة العربية
Recent numerical and experimental works have revealed a disorder-free many-body localization (MBL) in an interacting system subjecting to a linear potential, known as the Stark MBL. The conventional MBL, induced by disorder, has been widely studied by using quantum simulations based on superconducting circuits. Here, we consider the Stark MBL in two types of superconducting circuits, i.e., the 1D array of superconducting qubits, and the circuit where non-local interactions between qubits are mediated by a resonator bus. We calculate the entanglement entropy and participate entropy of the highly-excited eigenstates, and obtain the lower bound of the critical linear potential $gamma_{c}$, using the finite-size scaling collapse. Moreover, we study the non-equilibrium properties of the Stark MBL. In particular, we observe an anomalous relaxation of the imbalance, dominated by the power-law decay $t^{-xi}$. The exponent $xi$ satisfies $xipropto|gamma-gamma_{c}|^{ u}$ when $gamma<gamma_{c}$, and vanishes for $gammageq gamma_{c}$, which can be employed to estimate the $gamma_{c}$. Our work indicates that superconducting circuits are a promising platform for investigating the critical properties of the Stark MBL transition.
Quantum emulators, owing to their large degree of tunability and control, allow the observation of fine aspects of closed quantum many-body systems, as either the regime where thermalization takes place or when it is halted by the presence of disorde
Chains of superconducting circuit devices provide a natural platform for studies of synthetic bosonic quantum matter. Motivated by the recent experimental progress in realizing disordered and interacting chains of superconducting transmon devices, we
Thermalization is a ubiquitous process of statistical physics, in which details of few-body observables are washed out in favor of a featureless steady state. Even in isolated quantum many-body systems, limited to reversible dynamics, thermalization
Many-body localization (MBL) describes a quantum phase where an isolated interacting system subject to sufficient disorder displays non-ergodic behavior, evading thermal equilibrium that occurs under its own dynamics. Previously, the thermalization-M
Precise nature of MBL transitions in both random and quasiperiodic (QP) systems remains elusive so far. In particular, whether MBL transitions in QP and random systems belong to the same universality class or two distinct ones has not been decisively