ترغب بنشر مسار تعليمي؟ اضغط هنا

Next-to-leading order corrections for $gg to ZH$ with top quark mass dependence

105   0   0.0 ( 0 )
 نشر من قبل Li Lin Yang
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this Letter, we present for the first time a calculation of the complete next-to-leading order corrections to the $gg to ZH$ process. We use the method of small mass expansion to tackle the most challenging two-loop virtual amplitude, in which the top quark mass dependence is retained throughout the calculations. We show that our method provides reliable numeric results in all kinematic regions, and present phenomenological predictions for the total and differential cross sections at the Large Hadron Collider and its future upgrades. Our results are necessary ingredients towards reducing the theoretical uncertainties of the $pp to ZH$ cross sections down to the percent-level, and provide important theoretical inputs for future precision experimental collider programs.

قيم البحث

اقرأ أيضاً

In this article we calculate the next-to-leading order (NLO) QCD corrections for single on-shell top-quark production in association with two jets at proton-proton colliders. The tW channel is assumed to be measured independently. The QCD corrections to the inclusive cross section are about 28 (22)% for top (anti-top) quark production at the 13 TeV LHC. Theoretical errors are dominated by scale uncertainties, which are found to be around 5% at NLO. Results for various kinematical distributions are also provided using a well-motivated dynamical scale. The QCD corrections are found to have a non-trivial dependence on the phase-space.
The reaction pp/pbar p -> t tbar jet+X is an important background process for Higgs boson searches in the mass range below 200 GeV. Apart from that it is also an ideal laboratory for precision measurements in the top quark sector. Both applications r equire a solid theoretical prediction, which can be achieved only through a full next-to-leading order (NLO) calculation. In this work we describe the NLO computation of the subprocess gg -> t tbar g.
We present the first calculation of the next-to-next-to-leading order threshold soft function for top quark pair production at hadron colliders, with full velocity dependence of the massive top quarks. Our results are fully analytic, and can be entir ely written in terms of generalized polylogarithms. The scale-dependence of our result coincides with the well-known two-loop anomalous dimension matrix including the three-parton correlations, which at the two-loop order only appear when more than one massive partons are involved in the scattering process. In the boosted limit, our result exhibits the expected factorization property of mass logarithms, which leads to a consistent extraction of the soft fragmentation function. The next-to-next-to-leading order soft function obtained in this paper is an important ingredient for threshold resummation at the next-to-next-to-next-to-leading logarithmic accuracy.
D0 and CDF collaborations at the Fermilab Tevatron have searched for non-standard-model single top-quark production and set upper limits on the anomalous top quark flavor-changing neutral current (FCNC) couplings $kappa^g_{tc}/Lambda$ and $kappa^g_{t u}/Lambda$ using the measurement of total cross section calculated at the next-to-leading order (NLO) in QCD. In this Letter, we report on the effect of anomalous FCNC couplings to various decay branching ratios of the top quark, calculated at the NLO. This result is not only mandatory for a consistent treatment of both the top quark production and decay via FCNC couplings by D0 and CDF at the Tevatron but is also important for the study of ATLAS and CMS sensitivity to these anomalous couplings at the CERN LHC. We find that the NLO corrections to the partial decay widths of the three decay channels $ tto q + g$, $ tto q + gamma$ and $ tto q + Z$ are at the order of 10% in magnitude and modify their branching ratios by about 20%, 0.4% and 2%, respectively, as compared to their leading order predictions.
We present the next-to-leading order QCD corrections to the production of a Higgs boson in association with one jet at the LHC including the full top-quark mass dependence. The mass of the bottom quark is neglected. The two-loop integrals appearing i n the virtual contribution are calculated numerically using the method of Sector Decomposition. We study the Higgs boson transverse momentum distribution, focusing on the high $p_{t,mathrm{H}}$ region, where the top-quark loop is resolved. We find that the next-to-leading order QCD corrections are large but that the ratio of the next-to-leading order to leading order result is similar to that obtained by computing in the limit of large top-quark mass.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا