ﻻ يوجد ملخص باللغة العربية
Disc fragmentation plays an important role in determining the number of primordial stars (Pop III stars), their masses, and hence the initial mass function. In this second paper of a series, we explore the effect of uniform FUV H$_2$-photodissociating and X-ray radiation backgrounds on the formation of Pop~III stars using a grid of high-resolution zoom-in simulations. We find that, in an X-ray background, protostellar discs have lower surface density and higher Toomre $Q$ parameter, so they are more stable. For this reason, X-ray irradiated discs undergo fewer fragmentations and typically produce either binary systems or low-multiplicity systems. In contrast, the cases with weak or no X-ray irradiation produce systems with a typical multiplicity of $6 pm 3$. In addition, the most massive protostar in each system is smaller by roughly a factor of two when the disc is irradiated by X-rays, due to lower accretion rate. With these two effects combined, the initial mass function of fragments becomes more top-heavy in a strong X-ray background and is well described by a power-law with slope $1.53$ and high-mass cutoff of $61$ M$_odot$. Without X-rays, we find a slope $0.49$ and cutoff mass of $229$ M$_odot$. Finally, protostars migrate outward after their formation due to the accretion of high-angular momentum gas from outside and the migration is more frequent and significant in absence of X-ray irradiation.
The first luminous objects forming in the universe produce radiation backgrounds in the FUV and X-ray bands that affect the formation of Population III stars. Using a grid of cosmological hydrodynamics zoom-in simulations, we explore the impact of th
We present a new technique for empirically calibrating how the X-ray luminosity function (XLF) of X-ray binary (XRB) populations evolves following a star-formation event. We first utilize detailed stellar population synthesis modeling of far-UV to fa
We map the co-eval growth of galaxies and their central supermassive black holes in detail by measuring the incidence of Active Galactic Nuclei (AGN) in galaxies as a function of star formation rate (SFR) and redshift (to z~4). We combine large galax
We present measurements of the Galactic halos X-ray emission for 110 XMM-Newton sight lines, selected to minimize contamination from solar wind charge exchange emission. We detect emission from few million degree gas on ~4/5 of our sight lines. The t
HD dominates the cooling of primordial clouds with enhanced ionization, e.g. shock-heated clouds in structure formation or supernova remnants, relic HII regions of Pop III stars, and clouds with cosmic-ray (CR) irradiation. There, the temperature dec