ﻻ يوجد ملخص باللغة العربية
This paper investigates the accuracy and robustness of car-following (CF) and adaptive cruise control (ACC) models used to simulate measured driving behaviour of commercial ACCs. To this aim, a general modelling framework is proposed, in which ACC and CF models have been incrementally augmented with physics extensions; namely, perception delay, linear or nonlinear vehicle dynamics, and acceleration constraints. The framework has been applied to the Intelligent Driver Model (IDM), the Gipps model, and to three basic ACCs. These are a linear controller coupled with a constant time-headway spacing policy and with two other policies derived from the traffic flow theory, which are the IDM desired-distance function and the Gipps equilibrium distance-speed function. The ninety models resulting from the combination of the five base models and the aforementioned physics extensions, have been assessed and compared through a vast calibration and validation experiment against measured trajectory data of low-level automated vehicles. When a single extension has been applied, perception delay and linear dynamics have been the extensions to mostly increase modelling accuracy, whatsoever the base model considered. Concerning models, Gipps-based ones have outperformed all other CF and ACC models in calibration. Even among ACCs, the linear controllers coupled with a Gipps spacing policy have been the best performing. On the other hand, IDM-based models have been by far the most robust in validation, showing almost no crash when calibrated parameters have been used to simulate different trajectories. Overall, the paper shows the importance of cross-fertilization between traffic flow and vehicle studies.
Experimental measurements on commercial adaptive cruise control (ACC) vehicles is becoming increasingly available from around the world, providing an unprecedented opportunity to study the traffic flow characteristics that arise from this technology.
We propose a learning-based, distributionally robust model predictive control approach towards the design of adaptive cruise control (ACC) systems. We model the preceding vehicle as an autonomous stochastic system, using a hybrid model with continuou
Current commercial adaptive cruise control (ACC) systems consist of an upper-level planner controller that decides the optimal trajectory that should be followed, and a low-level controller in charge of sending the gas/brake signals to the mechanical
This paper demonstrates that the acceleration/deceleration limits in ACC systems can make a string stable ACC amplify the speed perturbation in natural driving. It is shown that the constrained acceleration/deceleration of the following ACCs are like
This paper presented a deep reinforcement learning method named Double Deep Q-networks to design an end-to-end vision-based adaptive cruise control (ACC) system. A simulation environment of a highway scene was set up in Unity, which is a game engine