ترغب بنشر مسار تعليمي؟ اضغط هنا

Monitoring transitions between antiferromagnetic states of individual molecules

187   0   0.0 ( 0 )
 نشر من قبل Carola Meyer
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spin-electronic devices are poised to become part of mainstream microelectronic technology. Downsizing them, however, faces the intrinsic difficulty that as ferromagnets become smaller, it becomes more difficult to stabilize their magnetic moment. Antiferromagnets are much more stable, and thus research on antiferromagnetic spintronics has developed into a fast-growing field. Here, we provide proof of concept data that allows us to expand the area of antiferromagnetic spintronics to the hitherto elusive level of individual molecules. In contrast to all previous work on molecular spintronics, our detection scheme of the molecules spin state does not rely on a magnetic moment. Instead, we use the step-like transitions between several distinct current levels caused by transitions between different antiferromagnetic states of an individual molecule grafted onto a carbon nanotube. We find that in the absence of an orbital momentum the antiferromagnetic spin states of the molecules show coherent superposition.

قيم البحث

اقرأ أيضاً

We report on a theoretical study of magnetic transitions induced by tunnelling electrons in individual adsorbed M-Phthalocyanine (M-Pc) molecules where M is a metal atom: Fe-Pc on a Cu(110)(2$times$1)-O surface and Co-Pc layers on Pb(111) islands. Th e magnetic transitions correspond to the change of orientation of the spin angular momentum of the metal ion with respect to the surroundings and possibly an applied magnetic field. The adsorbed Fe-Pc system is studied with a Density Functional Theory (DFT) transport approach showing that i) the magnetic structure of the Fe atom in the adsorbed Fe-Pc is quite different from that of the free Fe atom or of other adsorbed Fe systems and ii) that injection of electrons (holes) into the Fe atom in the adsorbed Fe-Pc molecule dominantly involves the Fe $3d_{z^2}$ orbital. These results fully specify the magnetic structure of the system and the process responsible for magnetic transitions. The dynamics of the magnetic transitions induced by tunnelling electrons is treated in a strong-coupling approach. The Fe-Pc treatment is extended to the Co-Pc case. The present calculations accurately reproduce the strength of the magnetic transitions as observed by magnetic IETS (Inelastic Electron Tunnelling Spectroscopy) experiments; in particular, the dominance of the inelastic current in the conduction of the adsorbed M-Pc molecule is accounted for.
The longitudinal resistivity at transitions between integer quantum Hall states in two-dimensional electrons confined to AlAs quantum wells is found to depend on the spin orientation of the partially-filled Landau level in which the Fermi energy resi des. The resistivity can be enhanced by an order of magnitude as the spin orientation of this energy level is aligned with the majority spin. We discuss possible causes and suggest a new explanation for spike-like features observed at the edges of quantum Hall minima near Landau level crossings.
We study the effect of electrostatic disorder on the conductivity of a three-dimensional antiferromagnetic insulator (a stack of quantum anomalous Hall layers with staggered magnetization). The phase diagram contains regions where the increase of dis order first causes the appearance of surface conduction (via a topological phase transition), followed by the appearance of bulk conduction (via a metal-insulator transition). The conducting surface states are stabilized by an effective time-reversal symmetry that is broken locally by the disorder but restored on long length scales. A simple self-consistent Born approximation reliably locates the boundaries of this socalled statistical topological phase.
We examine the excitonic nature of high-lying optical transitions in single-walled carbon nanotubes by means of Rayleigh scattering spectroscopy. A careful analysis of the principal transitions of individual semiconducting and metallic nanotubes reve als that in both cases the lineshape is consistent with an excitonic model, but not one of free-carriers. For semiconducting species, side-bands are observed at ~200 meV above the third and fourth optical transitions. These features are ascribed to exciton-phonon bound states. Such side-bands are not apparent for metallic nanotubes,as expected from the reduced strength of excitonic interactions in these systems.
Magnetic impurities on superconductors induce discrete bound levels inside the superconducting gap, known as Yu-Shiba-Rusinov (YSR) states. YSR levels are fully spin-polarized such that the tunneling between YSR states depends on their relative spin orientation. Here, we use scanning tunneling spectroscopy to resolve the spin dynamics in the tunneling process between two YSR states by experimentally extracting the angle between the spins. To this end, we exploit the ratio of thermally activated and direct spectral features in the measurement to directly extract the relative spin orientation between the two YSR states. We find freely rotating spins down to 7mK, indicating a purely paramagnetic nature of the impurities. Such a non-collinear spin alignment is essential not only for producing Majorana bound states but also as an outlook manipulating and moving the Majorana state onto the tip.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا