ﻻ يوجد ملخص باللغة العربية
We find half-wormhole solutions in Jackiw-Teitelboim gravity by allowing the geometry to end on a spacetime D-brane with specific boundary conditions. This theory also contains a Euclidean wormhole which leads to a factorization problem. We propose that half-wormholes provide a gravitational picture for how factorization is restored and show that the Euclidean wormhole emerges from averaging over the boundary conditions. The wormhole is known to be dual to a Sachdev-Ye-Kitaev (SYK) model with random complex couplings. We find that the free energy of the half-wormhole is strikingly similar to that of a single realization of this SYK model. These results suggest that the gravitational path integral computes an average over spacetime D-brane boundary conditions.
We argue that stringy effects in a putative gravity-dual picture for SYK-like models are related to the branching time, a kinetic coefficient defined in terms of the retarded kernel. A bound on the branching time is established assuming that the lead
We aim at formulating a higher-spin gravity theory around AdS$_2$ relevant for holography. As a first step, we investigate its kinematics by identifying the low-dimensional cousins of the standard higher-dimensional structures in higher-spin gravity
In this work we explore the effect of rotation in the size of a traversable wormhole obtained via a double trace boundary deformation. We find that at fixed temperature the size of the wormhole increases with the angular momentum $J/Mell$. The amount
We present effective field theories for the weakly coupled Weyl-$mathrm{Z}_2$ semimetal, as well as the holographic realization for the strongly coupled case. In both cases, the anomalous systems have both the chiral anomaly and the $mathrm{Z}_2$ ano
We consider the linear stability of $4$-dimensional hairy black holes with mixed boundary conditions in Anti-de Sitter spacetime. We focus on the mass of scalar fields around the maximally supersymmetric vacuum of the gauged $mathcal{N}=8$ supergravi