ترغب بنشر مسار تعليمي؟ اضغط هنا

CMU-GPR Dataset: Ground Penetrating Radar Dataset for Robot Localization and Mapping

128   0   0.0 ( 0 )
 نشر من قبل Alexander Baikovitz
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

There has been exciting recent progress in using radar as a sensor for robot navigation due to its increased robustness to varying environmental conditions. However, within these different radar perception systems, ground penetrating radar (GPR) remains under-explored. By measuring structures beneath the ground, GPR can provide stable features that are less variant to ambient weather, scene, and lighting changes, making it a compelling choice for long-term spatio-temporal mapping. In this work, we present the CMU-GPR dataset--an open-source ground penetrating radar dataset for research in subsurface-aided perception for robot navigation. In total, the dataset contains 15 distinct trajectory sequences in 3 GPS-denied, indoor environments. Measurements from a GPR, wheel encoder, RGB camera, and inertial measurement unit were collected with ground truth positions from a robotic total station. In addition to the dataset, we also provide utility code to convert raw GPR data into processed images. This paper describes our recording platform, the data format, utility scripts, and proposed methods for using this data.



قيم البحث

اقرأ أيضاً

This paper presents a fully hardware synchronized mapping robot with support for a hardware synchronized external tracking system, for super-precise timing and localization. Nine high-resolution cameras and two 32-beam 3D Lidars were used along with a professional, static 3D scanner for ground truth map collection. With all the sensors calibrated on the mapping robot, three datasets are collected to evaluate the performance of mapping algorithms within a room and between rooms. Based on these datasets we generate maps and trajectory data, which is then fed into evaluation algorithms. We provide the datasets for download and the mapping and evaluation procedures are made in a very easily reproducible manner for maximum comparability. We have also conducted a survey on available robotics-related datasets and compiled a big table with those datasets and a number of properties of them.
We address the problem of robot localization using ground penetrating radar (GPR) sensors. Current approaches for localization with GPR sensors require a priori maps of the systems environment as well as access to approximate global positioning (GPS) during operation. In this paper, we propose a novel, real-time GPR-based localization system for unknown and GPS-denied environments. We model the localization problem as an inference over a factor graph. Our approach combines 1D single-channel GPR measurements to form 2D image submaps. To use these GPR images in the graph, we need sensor models that can map noisy, high-dimensional image measurements into the state space. These are challenging to obtain a priori since image generation has a complex dependency on subsurface composition and radar physics, which itself varies with sensors and variations in subsurface electromagnetic properties. Our key idea is to instead learn relative sensor models directly from GPR data that map non-sequential GPR image pairs to relative robot motion. These models are incorporated as factors within the factor graph with relative motion predictions correcting for accumulated drift in the position estimates. We demonstrate our approach over datasets collected across multiple locations using a custom designed experimental rig. We show reliable, real-time localization using only GPR and odometry measurements for varying trajectories in three distinct GPS-denied environments. For our supplementary video, see https://youtu.be/HXXgdTJzqyw.
We present an approach for multi-robot consistent distributed localization and semantic mapping in an unknown environment, considering scenarios with classification ambiguity, where objects visual appearance generally varies with viewpoint. Our appro ach addresses such a setting by maintaining a distributed posterior hybrid belief over continuous localization and discrete classification variables. In particular, we utilize a viewpoint-dependent classifier model to leverage the coupling between semantics and geometry. Moreover, our approach yields a consistent estimation of both continuous and discrete variables, with the latter being addressed for the first time, to the best of our knowledge. We evaluate the performance of our approach in a multi-robot semantic SLAM simulation and in a real-world experiment, demonstrating an increase in both classification and localization accuracy compared to maintaining a hybrid belief using local information only.
A novel simultaneous localization and radio mapping (SLARM) framework for communication-aware connected robots in the unknown indoor environment is proposed, where the simultaneous localization and mapping (SLAM) algorithm and the global geographic m ap recovery (GGMR) algorithm are leveraged to simultaneously construct a geographic map and a radio map named a channel power gain map. Specifically, the geographic map contains the information of a precise layout of obstacles and passable regions, and the radio map characterizes the position-dependent maximum expected channel power gain between the access point and the connected robot. Numerical results show that: 1) The pre-defined resolution in the SLAM algorithm and the proposed GGMR algorithm significantly affect the accuracy of the constructed radio map; and 2) The accuracy of radio map constructed by the SLARM framework is more than 78.78% when the resolution value smaller than 0.15m, and the accuracy reaches 91.95% when the resolution value is pre-defined as 0.05m.
We present the Human And Robot Multimodal Observations of Natural Interactive Collaboration (HARMONIC) data set. This is a large multimodal data set of human interactions with a robotic arm in a shared autonomy setting designed to imitate assistive e ating. The data set provides human, robot, and environmental data views of twenty-four different people engaged in an assistive eating task with a 6 degree-of-freedom (DOF) robot arm. From each participant, we recorded video of both eyes, egocentric video from a head-mounted camera, joystick commands, electromyography from the forearm used to operate the joystick, third person stereo video, and the joint positions of the 6 DOF robot arm. Also included are several features that come as a direct result of these recordings, such as eye gaze projected onto the egocentric video, body pose, hand pose, and facial keypoints. These data streams were collected specifically because they have been shown to be closely related to human mental states and intention. This data set could be of interest to researchers studying intention prediction, human mental state modeling, and shared autonomy. Data streams are provided in a variety of formats such as video and human-readable CSV and YAML files.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا