ﻻ يوجد ملخص باللغة العربية
This paper concerns homological notions of regularity for noncommutative algebras. Properties of an algebra $A$ are reflected in the regularities of certain (complexes of) $A$-modules. We study the classical Tor-regularity and Castelnuovo-Mumford regularity, which were generalized from the commutative setting to the noncommutative setting by J{o}rgensen and Dong-Wu. We also introduce two new numerical homological invariants: concavity and Artin-Schelter regularity. Artin-Schelter regular algebras occupy a central position in noncommutative algebra and noncommutative algebraic geometry, and we use these invariants to establish criteria which can be used to determine whether a noetherian connected graded algebra is Artin-Schelter regular.
In this paper, we introduce and study differential graded (DG for short) polynomial algebras. In brief, a DG polynomial algebra $mathcal{A}$ is a connected cochain DG algebra such that its underlying graded algebra $mathcal{A}^{#}$ is a polynomial al
In this paper, we introduce and study e-injective semimodules, in particular over additively idempotent semirings. We completely characterize semirings all of whose semimodules are e-injective, describe semirings all of whose projective semimodules a
Let $A$ and $B$ be rings, $U$ a $(B, A)$-bimodule and $T=left(begin{smallmatrix} A & 0 U & B end{smallmatrix}right)$ be the triangular matrix ring. In this paper, we characterize the Gorenstein homological dimensions of modules over $T$, and discuss
For a monomial ideal $I$, we consider the $i$th homological shift ideal of $I$, denoted by $text{HS}_i(I)$, that is, the ideal generated by the $i$th multigraded shifts of $I$. Some algebraic properties of this ideal are studied. It is shown that for
Quantum codes with low-weight stabilizers known as LDPC codes have been actively studied recently due to their simple syndrome readout circuits and potential applications in fault-tolerant quantum computing. However, all families of quantum LDPC code