ترغب بنشر مسار تعليمي؟ اضغط هنا

Tournesol: A quest for a large, secure and trustworthy database of reliable human judgments

76   0   0.0 ( 0 )
 نشر من قبل L\\^e Nguy\\^en Hoang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Todays large-scale algorithms have become immensely influential, as they recommend and moderate the content that billions of humans are exposed to on a daily basis. They are the de-facto regulators of our societies information diet, from shaping opinions on public health to organizing groups for social movements. This creates serious concerns, but also great opportunities to promote quality information. Addressing the concerns and seizing the opportunities is a challenging, enormous and fabulous endeavor, as intuitively appealing ideas often come with unwanted {it side effects}, and as it requires us to think about what we deeply prefer. Understanding how todays large-scale algorithms are built is critical to determine what interventions will be most effective. Given that these algorithms rely heavily on {it machine learning}, we make the following key observation: emph{any algorithm trained on uncontrolled data must not be trusted}. Indeed, a malicious entity could take control over the data, poison it with dangerously manipulative fabricated inputs, and thereby make the trained algorithm extremely unsafe. We thus argue that the first step towards safe and ethical large-scale algorithms must be the collection of a large, secure and trustworthy dataset of reliable human judgments. To achieve this, we introduce emph{Tournesol}, an open source platform available at url{https://tournesol.app}. Tournesol aims to collect a large database of human judgments on what algorithms ought to widely recommend (and what they ought to stop widely recommending). We outline the structure of the Tournesol database, the key features of the Tournesol platform and the main hurdles that must be overcome to make it a successful project. Most importantly, we argue that, if successful, Tournesol may then serve as the essential foundation for any safe and ethical large-scale algorithm.



قيم البحث

اقرأ أيضاً

Digital multimedia watermarking technology was suggested in the last decade to embed copyright information in digital objects such images, audio and video. However, the increasing use of relational database systems in many real-life applications crea ted an ever increasing need for watermarking database systems. As a result, watermarking relational database systems is now merging as a research area that deals with the legal issue of copyright protection of database systems. Approach: In this study, we proposed an efficient database watermarking algorithm based on inserting binary image watermarks in non-numeric mutli-word attributes of selected database tuples. Results: The algorithm is robust as it resists attempts to remove or degrade the embedded watermark and it is blind as it does not require the original database in order to extract the embedded watermark. Conclusion: Experimental results demonstrated blindness and the robustness of the algorithm against common database attacks.
Personality has been identified as a vital factor in understanding the quality of human robot interactions. Despite this the research in this area remains fragmented and lacks a coherent framework. This makes it difficult to understand what we know a nd identify what we do not. As a result our knowledge of personality in human robot interactions has not kept pace with the deployment of robots in organizations or in our broader society. To address this shortcoming, this paper reviews 83 articles and 84 separate studies to assess the current state of human robot personality research. This review: (1) highlights major thematic research areas, (2) identifies gaps in the literature, (3) derives and presents major conclusions from the literature and (4) offers guidance for future research.
With the growing popularity of Autonomous Vehicles, more opportunities have bloomed in the context of Human-Vehicle Interactions. However, the lack of comprehensive and concrete database support for such specific use case limits relevant studies in t he whole design spaces. In this paper, we present our work-in-progress BROOK, a public multi-modal database with facial video records, which could be used to characterize drivers affective states and driving styles. We first explain how we over-engineer such database in details, and what we have gained through a ten-month study. Then we showcase a Neural Network-based predictor, leveraging BROOK, which supports multi-modal prediction (including physiological data of heart rate and skin conductance and driving status data of speed)through facial videos. Finally, we discuss related issues when building such a database and our future directions in the context of BROOK. We believe BROOK is an essential building block for future Human-Vehicle Interaction Research.
A solid methodology to understand human perception and preferences in human-robot interaction (HRI) is crucial in designing real-world HRI. Social cognition posits that the dimensions Warmth and Competence are central and universal dimensions charact erizing other humans. The Robotic Social Attribute Scale (RoSAS) proposes items for those dimensions suitable for HRI and validated them in a visual observation study. In this paper we complement the validation by showing the usability of these dimensions in a behavior based, physical HRI study with a fully autonomous robot. We compare the findings with the popular Godspeed dimensions Animacy, Anthropomorphism, Likeability, Perceived Intelligence and Perceived Safety. We found that Warmth and Competence, among all RoSAS and Godspeed dimensions, are the most important predictors for human preferences between different robot behaviors. This predictive power holds even when there is no clear consensus preference or significant factor difference between conditions.
Uncertainty visualizations often emphasize point estimates to support magnitude estimates or decisions through visual comparison. However, when design choices emphasize means, users may overlook uncertainty information and misinterpret visual distanc e as a proxy for effect size. We present findings from a mixed design experiment on Mechanical Turk which tests eight uncertainty visualization designs: 95% containment intervals, hypothetical outcome plots, densities, and quantile dotplots, each with and without means added. We find that adding means to uncertainty visualizations has small biasing effects on both magnitude estimation and decision-making, consistent with discounting uncertainty. We also see that visualization designs that support the least biased effect size estimation do not support the best decision-making, suggesting that a chart users sense of effect size may not necessarily be identical when they use the same information for different tasks. In a qualitative analysis of users strategy descriptions, we find that many users switch strategies and do not employ an optimal strategy when one exists. Uncertainty visualizations which are optimally designed in theory may not be the most effective in practice because of the ways that users satisfice with heuristics, suggesting opportunities to better understand visualization effectiveness by modeling sets of potential strategies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا