ﻻ يوجد ملخص باللغة العربية
Many real-world networks are embedded into a space or spacetime. The embedding space(time) constrains the properties of these real-world networks. We use the scale-dependent spectral dimension as a tool to probe whether real-world networks encode information on the dimensionality of the embedding space. We find that spacetime networks which are inspired by quantum gravity and based on a hybrid signature, following the Minkowski metric at small spatial distance and the Euclidean metric at large spatial distance, provide a template relevant for real-world networks of small-world type, including a representation of the internets architecture and biological neural networks.
Multiple scales coexist in complex networks. However, the small world property makes them strongly entangled. This turns the elucidation of length scales and symmetries a defiant challenge. Here, we define a geometric renormalization group for comple
Complex network theory aims to model and analyze complex systems that consist of multiple and interdependent components. Among all studies on complex networks, topological structure analysis is of the most fundamental importance, as it represents a n
The small-world transition is a first-order transition at zero density $p$ of shortcuts, whereby the normalized shortest-path distance undergoes a discontinuity in the thermodynamic limit. On finite systems the apparent transition is shifted by $Delt
Two new classes of networks are introduced that resemble small-world properties. These networks are recursively constructed but retain a fixed, regular degree. They consist of a one-dimensional lattice backbone overlayed by a hierarchical sequence of
We calculate the number of metastable configurations of Ising small-world networks which are constructed upon superimposing sparse Poisson random graphs onto a one-dimensional chain. Our solution is based on replicated transfer-matrix techniques. We