ﻻ يوجد ملخص باللغة العربية
Photonic bandgap design is one of the most basic ways to effectively control the interaction between light and matter. However, the traditional photonic bandgap is always dispersive (blueshift with the increase of the incident angle), which is disadvantageous to the construction of wide-angle optical devices. Hypercrystal, that the photonic crystal with layered hyperbolic metamaterials (HMMs), can strongly modify the bandgap properties based on the anomalous wavevector dispersion of the HMM. Here, based on phase variation compensation between HMM and isotropic dielectric layers, we propose for the first time to design nonreciprocal and flexible photonic bandgaps using magneto-optical HMMs in one-dimensional photonic crystals. Especially for the forward and backward incident light, the blueshift and dispersionless of the forward and backward cavity modes are designed respectively to realize the interesting omnidirectional nonreciprocal absorber. Our results show high (low) absorption about 0.99 (0.25) in an angle range of 20-75 degrees for the forward (backward) incident light at the wavelength of 367 nm. The nonreciprocal omnidirectional cavity mode not only facilitates the design of perfect unidirectional optical absorbers working in a wide-angle range, but also possesses significant applications for all-angle reflectors and filters.
Kirchhoff s law is one of the most fundamental law in thermal radiation. The violation of traditional Kirchhoff s law provides opportunities for higher energy conversion efficiency. Various micro-structures have been proposed to realize single-band n
Realization of chip-scale nonreciprocal optics such as isolators and circulators is highly demanding for all-optical signal routing and protection with standard photonics foundry process. Owing to the significant challenge for incorporating magneto-o
The concept of a trapped rainbow has generated considerable interest for optical data storage and processing. It aims to trap different frequency components of the wave packet at different positions permanently. However, all the previously proposed s
Magneto-optical effect refers to a rotation of polarization plane, which has been widely studied in traditional ferromagnetic metal and insulator films and scarcely in two-dimensional layered materials. Here we uncover a new nonreciprocal magneto-ine
In this paper, we show by experiment that by covering a thin flat nonlinear lens on the sources, the sub-diffraction-limit observation can be achieved by measuring either the near-field distribution or the far-field radiation of the sources at the ha