ترغب بنشر مسار تعليمي؟ اضغط هنا

The Cauchy problem for an inviscid Oldroyd-B model in $mathbb{R}^3$

101   0   0.0 ( 0 )
 نشر من قبل Sili Liu
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we consider the Cauchy problem for an inviscid compressible Oldroyd-B model in three dimensions. The global well posedness of strong solutions and the associated time-decay estimates in Sobolev spaces are established near an equilibrium state. The vanishing of viscosity is the main challenge compared with our previous work [47] where the viscosity coefficients are included and the decay rates for the highest-order derivatives of the solutions seem not optimal. One of the main objectives of this paper is to develop some new dissipative estimates such that the smallness of the initial data and decay rates are independent of the viscosity. In addition, it proves that the decay rates for the highest-order derivatives of the solutions are optimal. Our proof relies on Fourier theory and delicate energy method. This work can be viewed as an extension of [47].



قيم البحث

اقرأ أيضاً

121 - Shiwu Yang 2019
In this paper, we use Dafermos-Rodnianskis new vector field method to study the asymptotic pointwise decay properties for solutions of energy subcritical defocusing semilinear wave equations in $mathbb{R}^{1+3}$. We prove that the solution decays as quickly as linear waves for $p>frac{1+sqrt{17}}{2}$, covering part of the sub-conformal case, while for the range $2<pleq frac{1+sqrt{17}}{2}$, the solution still decays with rate at least $t^{-frac{1}{3}}$. As a consequence, the solution scatters in energy space when $p>2.3542$. We also show that the solution is uniformly bounded when $p>frac{3}{2}$.
214 - Hailiang Liu , Jaemin Shin 2010
The FENE dumbbell model consists of the incompressible Navier-Stokes equation and the Fokker-Planck equation for the polymer distribution. In such a model, the polymer elongation cannot exceed a limit $sqrt{b}$, yielding all interesting features near the boundary. In this paper we establish the local well-posedness for the FENE dumbbell model under a class of Dirichlet-type boundary conditions dictated by the parameter $b$. As a result, for each $b>0$ we identify a sharp boundary requirement for the underlying density distribution, while the sharpness follows from the existence result for each specification of the boundary behavior. It is shown that the probability density governed by the Fokker-Planck equation approaches zero near boundary, necessarily faster than the distance function $d$ for $b>2$, faster than $d|ln d|$ for $b=2$, and as fast as $d^{b/2}$ for $0<b<2$. Moreover, the sharp boundary requirement for $bgeq 2$ is also sufficient for the distribution to remain a probability density.
Let $H$ be a norm of ${bf R}^N$ and $H_0$ the dual norm of $H$. Denote by $Delta_H$ the Finsler-Laplace operator defined by $Delta_Hu:=mbox{div},(H( abla u) abla_xi H( abla u))$. In this paper we prove that the Finsler-Laplace operator $Delta_H$ acts as a linear operator to $H_0$-radially symmetric smooth functions. Furthermore, we obtain an optimal sufficient condition for the existence of the solution to the Cauchy problem for the Finsler heat equation $$ partial_t u=Delta_H u,qquad xin{bf R}^N,quad t>0, $$ where $Nge 1$ and $partial_t:=partial/partial t$.
In this paper we study the Cauchy problem for overdetermined systems of linear partial differential operators with constant coefficients in some spaces of $omega$-ultradifferentiable functions in the sense of Braun, Meise and Taylor, for non-quasiana lytic weight functions $omega$. We show that existence of solutions of the Cauchy problem is equivalent to the validity of a Phragmen-Lindelof principle for entire and plurisubharmonic functions on some irreducible affine algebraic varieties.
99 - Shiwu Yang 2019
We prove that solution of defocusing semilinear wave equation in $mathbb{R}^{1+3}$ with pure power nonlinearity is uniformly bounded for all $frac{3}{2}<pleq 2$ with sufficiently smooth and localized data. The result relies on the $r$-weighted energy estimate originally introduced by Dafermos and Rodnianski. This appears to be the first result regarding the global asymptotic property for the solution with small power $p$ under 2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا