ترغب بنشر مسار تعليمي؟ اضغط هنا

Backpropagated Neighborhood Aggregation for Accurate Training of Spiking Neural Networks

149   0   0.0 ( 0 )
 نشر من قبل Yukun Yang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

While backpropagation (BP) has been applied to spiking neural networks (SNNs) achieving encouraging results, a key challenge involved is to backpropagate a continuous-valued loss over layers of spiking neurons exhibiting discontinuous all-or-none firing activities. Existing methods deal with this difficulty by introducing compromises that come with their own limitations, leading to potential performance degradation. We propose a novel BP-like method, called neighborhood aggregation (NA), which computes accurate error gradients guiding weight updates that may lead to discontinuous modifications of firing activities. NA achieves this goal by aggregating finite differences of the loss over multiple perturbed membrane potential waveforms in the neighborhood of the present membrane potential of each neuron while utilizing a new membrane potential distance function. Our experiments show that the proposed NA algorithm delivers the state-of-the-art performance for SNN training on several datasets.

قيم البحث

اقرأ أيضاً

Computation using brain-inspired spiking neural networks (SNNs) with neuromorphic hardware may offer orders of magnitude higher energy efficiency compared to the current analog neural networks (ANNs). Unfortunately, training SNNs with the same number of layers as state of the art ANNs remains a challenge. To our knowledge the only method which is successful in this regard is supervised training of ANN and then converting it to SNN. In this work we directly train deep SNNs using backpropagation with surrogate gradient and find that due to implicitly recurrent nature of feed forward SNNs the exploding or vanishing gradient problem severely hinders their training. We show that this problem can be solved by tuning the surrogate gradient function. We also propose using batch normalization from ANN literature on input currents of SNN neurons. Using these improvements we show that is is possible to train SNN with ResNet50 architecture on CIFAR100 and Imagenette object recognition datasets. The trained SNN falls behind in accuracy compared to analogous ANN but requires several orders of magnitude less inference time steps (as low as 10) to reach good accuracy compared to SNNs obtained by conversion from ANN which require on the order of 1000 time steps.
Deep spiking neural networks (SNNs) hold great potential for improving the latency and energy efficiency of deep neural networks through event-based computation. However, training such networks is difficult due to the non-differentiable nature of asy nchronous spike events. In this paper, we introduce a novel technique, which treats the membrane potentials of spiking neurons as differentiable signals, where discontinuities at spike times are only considered as noise. This enables an error backpropagation mechanism for deep SNNs, which works directly on spike signals and membrane potentials. Thus, compared with previous methods relying on indirect training and conversion, our technique has the potential to capture the statics of spikes more precisely. Our novel framework outperforms all previously reported results for SNNs on the permutation invariant MNIST benchmark, as well as the N-MNIST benchmark recorded with event-based vision sensors.
99 - Wenrui Zhang , Peng Li 2019
Spiking neural networks (SNNs) well support spatiotemporal learning and energy-efficient event-driven hardware neuromorphic processors. As an important class of SNNs, recurrent spiking neural networks (RSNNs) possess great computational power. Howeve r, the practical application of RSNNs is severely limited by challenges in training. Biologically-inspired unsupervised learning has limited capability in boosting the performance of RSNNs. On the other hand, existing backpropagation (BP) methods suffer from high complexity of unrolling in time, vanishing and exploding gradients, and approximate differentiation of discontinuous spiking activities when applied to RSNNs. To enable supervised training of RSNNs under a well-defined loss function, we present a novel Spike-Train level RSNNs Backpropagation (ST-RSBP) algorithm for training deep RSNNs. The proposed ST-RSBP directly computes the gradient of a rated-coded loss function defined at the output layer of the network w.r.t tunable parameters. The scalability of ST-RSBP is achieved by the proposed spike-train level computation during which temporal effects of the SNN is captured in both the forward and backward pass of BP. Our ST-RSBP algorithm can be broadly applied to RSNNs with a single recurrent layer or deep RSNNs with multiple feed-forward and recurrent layers. Based upon challenging speech and image datasets including TI46, N-TIDIGITS, Fashion-MNIST and MNIST, ST-RSBP is able to train RSNNs with an accuracy surpassing that of the current state-of-art SNN BP algorithms and conventional non-spiking deep learning models.
We describe a method to train spiking deep networks that can be run using leaky integrate-and-fire (LIF) neurons, achieving state-of-the-art results for spiking LIF networks on five datasets, including the large ImageNet ILSVRC-2012 benchmark. Our me thod for transforming deep artificial neural networks into spiking networks is scalable and works with a wide range of neural nonlinearities. We achieve these results by softening the neural response function, such that its derivative remains bounded, and by training the network with noise to provide robustness against the variability introduced by spikes. Our analysis shows that implementations of these networks on neuromorphic hardware will be many times more power-efficient than the equivalent non-spiking networks on traditional hardware.
Spiking recurrent neural networks (RNNs) are a promising tool for solving a wide variety of complex cognitive and motor tasks, due to their rich temporal dynamics and sparse processing. However training spiking RNNs on dedicated neuromorphic hardware is still an open challenge. This is due mainly to the lack of local, hardware-friendly learning mechanisms that can solve the temporal credit assignment problem and ensure stable network dynamics, even when the weight resolution is limited. These challenges are further accentuated, if one resorts to using memristive devices for in-memory computing to resolve the von-Neumann bottleneck problem, at the expense of a substantial increase in variability in both the computation and the working memory of the spiking RNNs. To address these challenges and enable online learning in memristive neuromorphic RNNs, we present a simulation framework of differential-architecture crossbar arrays based on an accurate and comprehensive Phase-Change Memory (PCM) device model. We train a spiking RNN whose weights are emulated in the presented simulation framework, using a recently proposed e-prop learning rule. Although e-prop locally approximates the ideal synaptic updates, it is difficult to implement the updates on the memristive substrate due to substantial PCM non-idealities. We compare several widely adapted weight update schemes that primarily aim to cope with these device non-idealities and demonstrate that accumulating gradients can enable online and efficient training of spiking RNN on memristive substrates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا