ترغب بنشر مسار تعليمي؟ اضغط هنا

Testing General Relativity using Quasi-Periodic Oscillations from X-ray Black Holes: XTE J1550-564 and GRO J1655-40

74   0   0.0 ( 0 )
 نشر من قبل Katherine Rink
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use the Relativistic Precession Model (RPM) (Stella et al. 1999a) and quasi-periodic oscillation (QPO) observations from the Rossi X-ray Timing Explorer to derive constraints on the properties of the black holes that power these sources and to test General Relativity (GR) in the strong field regime. We extend the techniques outlined by Motta et al. (2014a,b) to use pairs of simultaneously measured QPOs, rather than triplets, and extend the underlying spacetime metric to constrain potential deviations from the predictions of GR for astrophysical black holes. To do this, we modify the RPM model to a Kerr-Newman-deSitter spacetime and model changes in the radial, ecliptic, and vertical frequencies. We compare our models with X-ray data of XTE J1550-564 and GRO J1655-40 using robust statistical techniques to constrain the parameters of the black holes and the deviations from GR. For both sources we constrain particular deviations from GR to be less than one part per thousand.



قيم البحث

اقرأ أيضاً

73 - Xin Jiang , Peng Wang , Houwen Wu 2021
The measurements of quasi-periodic oscillations (QPOs) provide a quite powerful tool to test the nature of astrophysical black hole candidates in the strong gravitational field regime. In this paper, we use QPOs within the relativistic precession mod el to test a recently proposed family of rotating black hole mimickers, which reduce to the Kerr metric in a limiting case, and can represent traversable wormholes or regular black holes with one or two horizons, depending on the values of the parameters. In particular, assuming that the compact object of GRO J1655-40 is described by a rotating black hole mimicker, we perform a $chi$-square analysis to fit the parameters of the mimicker with two sets of observed QPO frequencies from GRO J1655-40. Our results indicate that although the metric around the compact object of GRO J1655-40 is consistent with the Kerr metric, a regular black hole with one horizon is favored by the observation data of GRO J1655-40.
We present the time-frequency analysis results based on the Hilbert-Huang transform (HHT) for the evolution of a 4-Hz low-frequency quasi-periodic oscillation (LFQPO) around the black hole X-ray binary XTE J1550-564. The origin of LFQPOs is still deb ated. To understand the cause of the peak broadening, we utilized a recently developed time-frequency analysis, HHT, for tracking the evolution of the 4-Hz LFQPO from XTE J1550 564. By adaptively decomposing the ~4-Hz oscillatory component from the light curve and acquiring its instantaneous frequency, the Hilbert spectrum illustrates that the LFQPO is composed of a series of intermittent oscillations appearing occasionally between 3 Hz and 5 Hz. We further characterized this intermittency by computing the confidence limits of the instantaneous amplitudes of the intermittent oscillations, and constructed both the distributions of the QPOs high and low amplitude durations, which are the time intervals with and without significant ~4-Hz oscillations, respectively. The mean high amplitude duration is 1.45 s and 90% of the oscillation segments have lifetimes below 3.1 s. The mean low amplitude duration is 0.42 s and 90% of these segments are shorter than 0.73 s. In addition, these intermittent oscillations exhibit a correlation between the oscillations rms amplitude and mean count rate. This correlation could be analogous to the linear rms-flux relation found in the 4-Hz LFQPO through Fourier analysis. We conclude that the LFQPO peak in the power spectrum is broadened owing to intermittent oscillations with varying frequencies, which could be explained by using the Lense-Thirring precession model.
506 - Juri Poutanen 2014
Outbursts of the black hole (BH) X-ray binaries are dramatic events occurring in our Galaxy approximately once a year. They are detected by the X-ray telescopes and often monitored at longer wavelengths. We analyse the X-ray and optical/infrared (OIR ) light curves of the BH binary XTE J1550-564 during the 2000 outburst. By using the observed extreme colours as well as the characteristic decay time-scales of the OIR and X-ray light curves, we put strong constraints on the extinction towards the source. We accurately separate the contributions to the OIR flux of the irradiated accretion disc and a non-thermal component. We show that the OIR non-thermal component appears during the X-ray state transitions both during the rising and the decaying part of the outburst at nearly the same X-ray hardness but at luminosities differing by a factor of 3. The line marking the quenching/recovery of the non-thermal component at the X-ray hardness-flux diagram seems to coincide with the jet line that marks the presence of the compact radio jet. The inferred spectral shape and the evolution of the non-thermal component during the outburst, however, are not consistent with the jet origin, but are naturally explained in terms of the hybrid hot flow scenario, where non-thermal electrons emit synchrotron radiation in the OIR band. This implies a close, possibly causal connection between the presence of the hot flow and the compact jet. We find that the non-thermal component is hardening during the hard state at the decaying stage of the outburst, which indicates that the acceleration efficiency is a steep function of radius at low accretion rate.
We explore the accretion properties of the black hole X-ray binary j1550 during its outbursts in 1998/99 and 2000. We model the disk, corona, and reflection components of X-ray spectra taken with the {it Rossi X-ray Timing Explorer} (rxte), using the {tt relxill} suite of reflection models. The key result of our modeling is that the reflection spectrum in the very soft state is best explained by disk self-irradiation, i.e., photons from the inner disk are bent by the strong gravity of the black hole, and reflected off the disk surface. This is the first known detection of thermal disk radiation reflecting off the inner disk. There is also an apparent absorption line at $sim6.9$ keV which may be evidence of an ionized disk wind. The coronal electron temperature ($kT_{rm e}$) is, as expected, lower in the brighter outburst of 1998/99, explained qualitatively by more efficient coronal cooling due to irradiating disk photons. The disk inner radius is consistent with being within a few times the innermost stable circular orbit (ISCO) throughout the bright-hard-to-soft states (10s of $r_{rm g}$ in gravitational units). The disk inclination is low during the hard state, disagreeing with the binary inclination value, and very close to $90^{circ}$ in the soft state, recovering to a lower value when adopting a blackbody spectrum as the irradiating continuum.
115 - R. K. Jain 1999
We report the identification of the optical counterpart of the X-ray transient XTE J1550-564 described in two companion papers by Sobczak et al (1999) and Remillard et al (1999). We find that the optical source brightened by approximately 4 magnitude s over the quiescent counterpart seen at B~22 on a SERC survey plate, and then decayed by approximately 1.5 magnitudes over the 7 week long observation period. There was an optical response to the large X-ray flare described by Sobczak et al (1999), but it was much smaller and delayed by roughly 1 day.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا