ترغب بنشر مسار تعليمي؟ اضغط هنا

Driven dissipative preparation of few-body Laughlin states of Rydberg polaritons in twisted cavities

54   0   0.0 ( 0 )
 نشر من قبل Kristina Colladay
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a driven dissipative protocol for creating an optical analog of the Laughlin state in a system of Rydberg polaritons in a twisted optical cavity. We envision resonantly driving the system into a 4-polariton state by injecting photons in carefully selected modes. The dissipative nature of the polariton-polariton interactions leads to a decay into a two-polariton analog of the Laughlin state. Generalizations of this technique could be used to explore fractional statistics and anyon based quantum information processing. We also model recent experiments that attempt to coherently drive into this same state.



قيم البحث

اقرأ أيضاً

We study the propagation of strongly interacting Rydberg polaritons through an atomic medium in a one-dimensional optical lattice. We derive an effective single-band Hubbard model to describe the dynamics of the dark state polaritons under realistic assumptions. Within this model, we analyze the driven-dissipative transport of polaritons through the system by considering a coherent drive on one side and by including the spontaneous emission of the metastable Rydberg state. Using a variational approch to solve the many-body problem, we find strong antibunching of the outgoing photons despite the losses from the Rydberg state decay.
We propose a technique for engineering momentum-dependent dissipation in Bose-Einstein condensates with non-local interactions. The scheme relies on the use of momentum-dependent dark-states in close analogy to velocity-selective coherent population trapping. During the short-time dissipative dynamics, the system is driven into a particular finite-momentum phonon mode, which in real space corresponds to an ordered structure with non-local density-density correlations. Dissipation-induced ordering can be observed and studied in present-day experiments using cold atoms with dipole-dipole or off-resonant Rydberg interactions. Due to its dissipative nature, the ordering does not require artificial breaking of translational symmetry by an opticallattice or harmonic trap. This opens up a perspective of direct cooling of quantum gases into strongly-interacting phases.
We show that the resonant dipole-dipole interaction can give rise to bound states between two and three Rydberg atoms with non-overlapping electron clouds. The dimer and trimer states arise from avoided level crossings between states converging to di fferent fine structure manifolds in the limit of separated atoms. We analyze the angular dependence of the potential wells, characterize the quantum dynamics in these potentials and discuss methods for their production and detection. Typical distances between the atoms are of the order of several micrometers which can be resolved in state-of-the-art experiments. The potential depths and typical oscillation frequencies are about one order of magnitude larger as compared to the dimer and trimer states investigated in [PRA $textbf{86}$ 031401(R) (2012)] and [PRL $textbf{111}$ 233003 (2014)], respectively. We find that the dimer and trimer molecules can be aligned with respect to the axis of a weak electric field.
Ultracold atoms are an ideal platform to study strongly correlated phases of matter in and out of equilibrium. Much of the experimental progress in this field crucially relies on the control of the contact interaction between two atoms. Control of st rong long-range interactions between distant ground state atoms has remained a long standing goal, opening the path towards the study of fundamentally new quantum many-body systems including frustrated or topological magnets and supersolids. Optical dressing of ground state atoms by near-resonant laser coupling to Rydberg states has been proposed as a versatile method to engineer such interactions. However, up to now the great potential of this approach for interaction control in a many-body setting has eluded experimental confirmation. Here we report the realisation of coherent Rydberg-dressing in an ultracold atomic lattice gas and directly probe the induced interaction potential using an interferometric technique with single atom sensitivity. We use this approach to implement a two-dimensional synthetic spin lattice and demonstrate its versatility by tuning the range and anisotropy of the effective spin interactions. Our measurements are in remarkable agreement with exact solutions of the many-body dynamics, providing further evidence for the high degree of accurate interaction control in these systems. Finally, we identify a collective many-body decay process, and discuss possible routes to overcome this current limitation of coherence times. Our work marks the first step towards the use of laser-controlled Rydberg interactions for the study of exotic quantum magnets in optical lattices.
Recent experiments with strongly interacting, driven Rydberg ensembles have introduced a promising setup for the study of self-organized criticality (SOC) in cold atom systems. Based on this setup, we theoretically propose a control mechanism for the paradigmatic avalanche dynamics of SOC in terms of a time-dependent drive amplitude. This gives access to a variety of avalanche dominated, self-organization scenarios, prominently including self-organized criticality, as well as sub- and supercritical dynamics. We analyze the dependence of the dynamics on external scales and spatial dimensionality. It demonstrates the potential of driven Rydberg systems as a playground for the exploration of an extended SOC phenomenology and their relation to other common scenarios of SOC, such as e.g. in neural networks and on graphs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا