ﻻ يوجد ملخص باللغة العربية
Mendelian randomization (MR) has become a popular approach to study causal effects by using genetic variants as instrumental variables. We propose a new MR method, GENIUS-MAWII, which simultaneously addresses the two salient phenomena that adversely affect MR analyses: many weak instruments and widespread horizontal pleiotropy. Similar to MR GENIUS citep{Tchetgen2019_GENIUS}, we achieve identification of the treatment effect by leveraging heteroscedasticity of the exposure. We then derive the class of influence functions of the treatment effect, based on which, we construct a continuous updating estimator and establish its consistency and asymptotic normality under a many weak invalid instruments asymptotic regime by developing novel semiparametric theory. We also provide a measure of weak identification and graphical diagnostic tool. We demonstrate in simulations that GENIUS-MAWII has clear advantages in the presence of directional or correlated horizontal pleiotropy compared to other methods. We apply our method to study the effect of body mass index on systolic blood pressure using UK Biobank.
Mendelian randomization (MR) is a popular instrumental variable (IV) approach, in which one or several genetic markers serve as IVs that can sometimes be leveraged to recover valid inferences about a given exposure-outcome causal association subject
Instrumental variable methods are among the most commonly used causal inference approaches to account for unmeasured confounders in observational studies. The presence of invalid instruments is a major concern for practical applications and a fast-gr
Instrumental variable methods provide a powerful approach to estimating causal effects in the presence of unobserved confounding. But a key challenge when applying them is the reliance on untestable exclusion assumptions that rule out any relationshi
Standard Mendelian randomization analysis can produce biased results if the genetic variant defining the instrumental variable (IV) is confounded and/or has a horizontal pleiotropic effect on the outcome of interest not mediated by the treatment. We
Mendelian randomization (MR) is a statistical method exploiting genetic variants as instrumental variables to estimate the causal effect of modifiable risk factors on an outcome of interest. Despite wide uses of various popular two-sample MR methods