ترغب بنشر مسار تعليمي؟ اضغط هنا

Screener3D: a Gaseous Time Projection Chamber for Ultra-low Radioactive Material Screening

79   0   0.0 ( 0 )
 نشر من قبل Haiyan Du
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

For experiments searching for rare signals, background events from the detector itself are one of the major limiting factors for search sensitivity. Screening for ultra-low radioactive detector material is becoming ever more essential. We propose to develop a gaseous Time Projection Chamber (TPC) with Micromegas readout for radio-screening purposes. The TPC records three-dimensional trajectories of charged particles emitted from a flat sample placed inside the active volume. The detector is able to distinguish the origin of an event and identify the particle types with information from trajectories, which improves the screening sensitivity significantly. For $alpha$ particles from the sample surface, we find that our proposed detector can reach a sensitivity of better than 100~$mu$Bq$cdot$m$^{-2}$ within two days.

قيم البحث

اقرأ أيضاً

62 - D. Autiero 2007
One of the three X-ray detectors of the CAST experiment searching for solar axions is a Time Projection Chamber (TPC) with a multi-wire proportional counter (MWPC) as a readout structure. Its design has been optimized to provide high sensitivity to t he detection of the low intensity X-ray signal expected in the CAST experiment. A low hardware threshold of 0.8 keV is safely set during normal data taking periods, and the overall efficiency for the detection of photons coming from conversion of solar axions is 62 %. Shielding has been installed around the detector, lowering the background level to 4.10 x 10^-5 counts/cm^2/s/keV between 1 and 10 keV. During phase I of the CAST experiment the TPC has provided robust and stable operation, thus contributing with a competitive result to the overall CAST limit on axion-photon coupling and mass.
Active-target detectors have the potential to address the difficulties associated with the low intensities of radioactive beams. We have developed an active-target detector, the Notre Dame Cube (ND-Cube), to perform experiments with radioactive beams produced at $mathit{TwinSol}$ and to aid in the development of active-target techniques. Various aspects of the ND-Cube and its design were characterized. The ND-Cube was commissioned with a $^{7}$Li beam for measuring $^{40}$Ar + $^{7}$Li fusion reaction cross sections and investigating $^{7}$Li($alpha$,$alpha$)$^{7}$Li scattering events. The ND-Cube will be used to study a range of reactions using light radioactive ions produced at low energy.
106 - F.J. Iguaz , J.G. Garza , F. Aznar 2015
Dark Matter experiments are recently focusing their detection techniques in low-mass WIMPs, which requires the use of light elements and low energy threshold. In this context, we describe the TREX-DM experiment, a low background Micromegas-based Time Projection Chamber for low-mass WIMP detection. Its main goal is the operation of an active detection mass $sim$0.3 kg, with an energy threshold below 0.4~keVee and fully built with previously selected radiopure materials. This work focuses on the commissioning of the actual setup situated in a laboratory on surface. A preliminary background model of the experiment is also presented, based on Geant4 simulations and two discrimination methods: a conservative muon/electron and one based on a $^{252}$Cf source. Based on this model, TREX-DM could be competitive in the search for low mass WIMPs and, in particular, it could be sensitive to the WIMP interpretation of the DAMA/LIBRA hint.
For the International Large Detector concept at the planned International Linear Collider, the use of time projection chambers (TPC) with micro-pattern gas detector readout as the main tracking detector is investigated. In this paper, results from a prototype TPC, placed in a 1 T solenoidal field and read out with three independent GEM-based readout modules, are reported. The TPC was exposed to a 6 GeV electron beam at the DESY II synchrotron. The efficiency for reconstructing hits, the measurement of the drift velocity, the space point resolution and the control of field inhomogeneities are presented.
In this paper we present the R&D activity on a new GEM-based TPC prototype for AMADEUS, a new experimental proposal at the DA{Phi}NE {Phi}-factory at the Laboratori Nazionali di Frascati (INFN), aiming to perform measurements of the low-energy negati ve kaons interactions in nuclei. Such innovative detector will equip the inner part of the experiment in order to perfom a better reconstruction of the primary vertex and the secondary particles tracking. A 10x10 cm2 prototype with a drift gap up to 15 cm was realized and succesfully tested at the {pi} M1 beam facility of the Paul Scherrer Institut (PSI) with low momentum hadrons. The measurements of the detector efficiency and spatial resolution have been performed. The results as a function of the gas gain, drift field, front-end electronic threshold and particle momentum are reported and discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا