ﻻ يوجد ملخص باللغة العربية
In the Chinese medical insurance industry, the assessors role is essential and requires significant efforts to converse with the claimant. This is a highly professional job that involves many parts, such as identifying personal information, collecting related evidence, and making a final insurance report. Due to the coronavirus (COVID-19) pandemic, the previous offline insurance assessment has to be conducted online. However, for the junior assessor often lacking practical experience, it is not easy to quickly handle such a complex online procedure, yet this is important as the insurance company needs to decide how much compensation the claimant should receive based on the assessors feedback. In order to promote assessors work efficiency and speed up the overall procedure, in this paper, we propose a dialogue-based information extraction system that integrates advanced NLP technologies for medical insurance assessment. With the assistance of our system, the average time cost of the procedure is reduced from 55 minutes to 35 minutes, and the total human resources cost is saved 30% compared with the previous offline procedure. Until now, the system has already served thousands of online claim cases.
Developing conversational agents to interact with patients and provide primary clinical advice has attracted increasing attention due to its huge application potential, especially in the time of COVID-19 Pandemic. However, the training of end-to-end
We present the first human-annotated dialogue-based relation extraction (RE) dataset DialogRE, aiming to support the prediction of relation(s) between two arguments that appear in a dialogue. We further offer DialogRE as a platform for studying cross
Most modern Information Extraction (IE) systems are implemented as sequential taggers and only model local dependencies. Non-local and non-sequential context is, however, a valuable source of information to improve predictions. In this paper, we intr
Dialogue-based relation extraction (DiaRE) aims to detect the structural information from unstructured utterances in dialogues. Existing relation extraction models may be unsatisfactory under such a conversational setting, due to the entangled logic
The multi-format information extraction task in the 2021 Language and Intelligence Challenge is designed to comprehensively evaluate information extraction from different dimensions. It consists of an multiple slots relation extraction subtask and tw