ﻻ يوجد ملخص باللغة العربية
Semiconductor valence holes are known to have heavy and light effective masses; but the consequence of this mass difference on Coulomb scatterings has been considered intractable and thus ignored up to now. The reason is that the heavy/light index is quantized along the hole momentum that changes in a Coulomb scattering; so, a heavy hole can turn light, depending on the scattering angle. This mass change has never been taken into account in many-body problems, and a single ``average hole mass has been used instead. In order to study the missed consequences of this crude approximation, the first necessary step is to determine the Coulomb scatterings with valence holes in a precise way. We here derive these scatterings from scratch, starting from the threefold valence-electron spatial level, all the way through the spin-orbit splitting, the Kohn-Luttinger effective Hamiltonian, its spherical approximation, and the phase factors that appear when turning from valence electron to hole operators, that is, all the points of semiconductor physics that render valence holes so different from a na{i}ve positive charge.
Via angular Shubnikov-de Hass (SdH) quantum oscillations measurements, we determine the Fermi surface topology of NbAs, a Weyl semimetal candidate. The SdH oscillations consist of two frequencies, corresponding to two Fermi surface extrema: 20.8 T ($
In this work we train a neural network to identify impurities in the experimental images obtained by the scanning tunneling microscope measurements. The neural network is first trained with large number of simulated data and then the trained neural n
Quasiparticles are physically motivated mathematical constructs for simplifying the seemingly complicated many-body description of solids. A complete understanding of their dynamics and the nature of the effective interactions between them provides r
A spin-1 Heisenberg model on trimerized Kagome lattice is studied by doing a low-energy bosonic theory in terms of plaquette-triplons defined on its triangular unit-cells. The model has an intra-triangle antiferromagnetic exchange interaction, $J$ (s
Superfluidity in e-h bilayers in graphene and GaAs has been predicted many times but not observed. A key problem is how to treat the screening of the Coulomb interaction for pairing. Different mean-field theories give dramatically different conclusio