ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Visual Cooking: Exploring Practices and Challenges of Meal Preparation by People with Visual Impairments

55   0   0.0 ( 0 )
 نشر من قبل Franklin Mingzhe Li
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The reliance on vision for tasks related to cooking and eating healthy can present barriers to cooking for oneself and achieving proper nutrition. There has been little research exploring cooking practices and challenges faced by people with visual impairments. We present a content analysis of 122 YouTube videos to highlight the cooking practices of visually impaired people, and we describe detailed practices for 12 different cooking activities (e.g., cutting and chopping, measuring, testing food for doneness). Based on the cooking practices, we also conducted semi-structured interviews with 12 visually impaired people who have cooking experience and show existing challenges, concerns, and risks in cooking (e.g., tracking the status of tasks in progress, verifying whether things are peeled or cleaned thoroughly). We further discuss opportunities to support the current practices and improve the independence of people with visual impairments in cooking (e.g., zero-touch interactions for cooking). Overall, our findings provide guidance for future research exploring various assistive technologies to help people cook without relying on vision.



قيم البحث

اقرأ أيضاً

Alternative text is critical in communicating graphics to people who are blind or have low vision. Especially for graphics that contain rich information, such as visualizations, poorly written or an absence of alternative texts can worsen the informa tion access inequality for people with visual impairments. In this work, we consolidate existing guidelines and survey current practices to inspect to what extent current practices and recommendations are aligned. Then, to gain more insight into what people want in visualization alternative texts, we interviewed 22 people with visual impairments regarding their experience with visualizations and their information needs in alternative texts. The study findings suggest that participants actively try to construct an image of visualizations in their head while listening to alternative texts and wish to carry out visualization tasks (e.g., retrieve specific values) as sighted viewers would. The study also provides ample support for the need to reference the underlying data instead of visual elements to reduce users cognitive burden. Informed by the study, we provide a set of recommendations to compose an informative alternative text.
The automated analysis of digital human communication data often focuses on specific aspects like content or network structure in isolation, while classical communication research stresses the importance of a holistic analysis approach. This work aim s to formalize digital communication analysis and investigate how classical results can be leveraged as part of visually interactive systems, which offers new analysis opportunities to allow for less biased, skewed, or incomplete results. For this, we construct a conceptual framework and design space based on the existing research landscape, technical considerations, and communication research that describes the properties, capabilities, and composition of such systems through 30 criteria in four analysis dimensions. We make the case how visual analytics principles are uniquely suited for a more holistic approach by tackling the automation complexity and leverage domain knowledge, paving the way to generate design guidelines for building such approaches. Our framework provides a common language and description of communication analysis systems to support existing research, highlights relevant design areas while promoting and supporting the mutual exchange between researchers. Additionally, our framework identifies existing gaps and highlights opportunities in research areas that are worth investigating further. With this contribution, we pave the path for the formalization of digital communication analysis through visual analytics.
202 - Raymond Li 2021
The proliferation of text messaging for mobile health is generating a large amount of patient-doctor conversations that can be extremely valuable to health care professionals. We present ConVIScope, a visual text analytic system that tightly integrat es interactive visualization with natural language processing in analyzing patient-doctor conversations. ConVIScope was developed in collaboration with healthcare professionals following a user-centered iterative design. Case studies with six domain experts suggest the potential utility of ConVIScope and reveal lessons for further developments.
This paper describes an ongoing multi-scale visual analytics approach for exploring and analyzing biomedical knowledge at scale.We utilize global and local views, hierarchical and flow-based graph layouts, multi-faceted search, neighborhood recommend ations, and document visualizations to help researchers interactively explore, query, and analyze biological graphs against the backdrop of biomedical knowledge. The generality of our approach - insofar as it re-quires only knowledge graphs linked to documents - means it can support a range of therapeutic use cases across different domains, from disease propagation to drug discovery. Early interactions with domain experts support our approach for use cases with graphs with over 40,000 nodes and 350,000 edges.
As the use of machine learning (ML) models in product development and data-driven decision-making processes became pervasive in many domains, peoples focus on building a well-performing model has increasingly shifted to understanding how their model works. While scholarly interest in model interpretability has grown rapidly in research communities like HCI, ML, and beyond, little is known about how practitioners perceive and aim to provide interpretability in the context of their existing workflows. This lack of understanding of interpretability as practiced may prevent interpretability research from addressing important needs, or lead to unrealistic solutions. To bridge this gap, we conducted 22 semi-structured interviews with industry practitioners to understand how they conceive of and design for interpretability while they plan, build, and use their models. Based on a qualitative analysis of our results, we differentiate interpretability roles, processes, goals and strategies as they exist within organizations making heavy use of ML models. The characterization of interpretability work that emerges from our analysis suggests that model interpretability frequently involves cooperation and mental model comparison between people in different roles, often aimed at building trust not only between people and models but also between people within the organization. We present implications for design that discuss gaps between the interpretability challenges that practitioners face in their practice and approaches proposed in the literature, highlighting possible research directions that can better address real-world needs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا