ﻻ يوجد ملخص باللغة العربية
Pretraining and multitask learning are widely used to improve the speech to text translation performance. In this study, we are interested in training a speech to text translation model along with an auxiliary text to text translation task. We conduct a detailed analysis to understand the impact of the auxiliary task on the primary task within the multitask learning framework. Our analysis confirms that multitask learning tends to generate similar decoder representations from different modalities and preserve more information from the pretrained text translation modules. We observe minimal negative transfer effect between the two tasks and sharing more parameters is helpful to transfer knowledge from the text task to the speech task. The analysis also reveals that the modality representation difference at the top decoder layers is still not negligible, and those layers are critical for the translation quality. Inspired by these findings, we propose three methods to improve translation quality. First, a parameter sharing and initialization strategy is proposed to enhance information sharing between the tasks. Second, a novel attention-based regularization is proposed for the encoders and pulls the representations from different modalities closer. Third, an online knowledge distillation is proposed to enhance the knowledge transfer from the text to the speech task. Our experiments show that the proposed approach improves translation performance by more than 2 BLEU over a strong baseline and achieves state-of-the-art results on the textsc{MuST-C} English-German, English-French and English-Spanish language pairs.
Simultaneous speech-to-text translation is widely useful in many scenarios. The conventional cascaded approach uses a pipeline of streaming ASR followed by simultaneous MT, but suffers from error propagation and extra latency. To alleviate these issu
In this paper, we describe our end-to-end multilingual speech translation system submitted to the IWSLT 2021 evaluation campaign on the Multilingual Speech Translation shared task. Our system is built by leveraging transfer learning across modalities
This paper describes USTC-NELSLIPs submissions to the IWSLT2021 Simultaneous Speech Translation task. We proposed a novel simultaneous translation model, Cross Attention Augmented Transducer (CAAT), which extends conventional RNN-T to sequence-to-seq
NeurST is an open-source toolkit for neural speech translation. The toolkit mainly focuses on end-to-end speech translation, which is easy to use, modify, and extend to advanced speech translation research and products. NeurST aims at facilitating th
The paper describes BUTs English to German offline speech translation(ST) systems developed for IWSLT2021. They are based on jointly trained Automatic Speech Recognition-Machine Translation models. Their performances is evaluated on MustC-Common test