ترغب بنشر مسار تعليمي؟ اضغط هنا

Which Molecular Cloud Structures Are Bound?

107   0   0.0 ( 0 )
 نشر من قبل Neal J. Evans II
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze surveys of molecular cloud structures defined by tracers ranging from CO $J = 1-0$ through $^{13}$CO $J = 1-0$ to dust emission together with NH$_3$ data. The mean value of the virial parameter and the fraction of mass in bound structures depends on the method used to identify structures. Generally, the virial parameter decreases and the fraction of mass in bound structures increases with the effective density of the tracer, the surface density and mass of the structures, and the distance from the center of a galaxy. For the most complete surveys of structures in the Galaxy defined by CO $J = 1-0$, the fraction of mass that is in bound structures is 0.19. For catalogs of other galaxies based on CO $J = 2-1$, the fraction is 0.35. These results offer substantial alleviation of the fundamental problem of slow star formation. If only clouds found to be bound are counted and they are assumed to collapse in a free-fall time at their mean cloud density, the sum over all clouds in a complete survey of the Galaxy yields a predicted star formation rate of 46 solar masses per year, a factor of 6.5 less than if all clouds are bound.



قيم البحث

اقرأ أيضاً

The common assumption that Theta-1-Ori C is the dominant ionizing source for the Orion Nebula is critically examined. This assumption underlies much of the existing analysis of the nebula. In this paper we establish through comparison of the relative strengths of emission lines with expectations from Cloudy models and through the direction of the bright edges of proplyds that Theta-2-Ori-A, which lies beyond the Bright Bar, also plays an important role. Theta-1-Ori-C does dominate ionization in the inner part of the Orion Nebula, but outside of the Bright Bar as far as the southeast boundary of the Extended Orion Nebula, Theta-2-Ori-A is the dominant source. In addition to identifying the ionizing star in sample regions, we were able to locate those portions of the nebula in 3-D. This analysis illustrates the power of MUSE spectral imaging observations in identifying sources of ionization in extended regions.
286 - Sudhanshu Barway 2016
S0 galaxies are known to host classical bulges with a broad range of size and mass, while some such S0s are barred and some not. The origin of the bars has remained as a long-standing problem -- what made bar formation possible in certain S0s? By a nalysing a large sample of S0s with classical bulges observed by the Spitzer space telescope, we find that most of our barred S0s host comparatively low-mass classical bulges, typically with bulge-to-total ratio ($B/T$) less than $0.5$; whereas S0s with more massive classical bulges than these do not host any bar. Furthermore, we find that amongst the barred S0s, there is a trend for the longer and massive bars to be associated with comparatively bigger and massive classical bulges -- possibly suggesting bar growth being facilitated by these classical bulges. In addition, we find that the bulge effective radius is always less than the bar effective radius --indicating an interesting synergy between the host classical bulge and bars being maintained while bar growth occurred in these S0s.
Using wide-field $^{13}$CO ($J=1-0$) data taken with the Nobeyama 45-m telescope, we investigate cloud structures of the infrared dark cloud complex in M17 with SCIMES. In total, we identified 118 clouds that contain 11 large clouds with radii larger than 1 pc. The clouds are mainly distributed in the two representative velocity ranges of 10 $-$ 20 km s$^{-1}$ and 30 $-$ 40 km s$^{-1}$. By comparing with the ATLASGAL catalog, we found that the majority of the $^{13}$CO clouds with 10 $-$ 20 km s$^{-1}$ and 30 $-$ 40 km s$^{-1}$ are likely located at distances of 2 kpc (Sagittarius arm) and 3 kpc (Scutum arm), respectively. Analyzing the spatial configuration of the identified clouds and their velocity structures, we attempt to reveal the origin of the cloud structure in this region. Here we discuss three possibilities: (1) overlapping with different velocities, (2) cloud oscillation, and (3) cloud-cloud collision. From the position-velocity diagrams, we found spatially-extended faint emission between $sim$ 20 km s$^{-1}$ and $sim$ 35 km s$^{-1}$, which is mainly distributed in the spatially-overlapped areas of the clouds. We also found that in some areas where clouds with different velocities overlapped, the magnetic field orientation changes abruptly. The distribution of the diffuse emission in the position-position-velocity space and the bending magnetic fields appear to favor the cloud-cloud collision scenario compared to other scenarios. In the cloud-cloud collision scenario, we propose that two $sim$35 km s$^{-1}$ foreground clouds are colliding with clouds at $sim$20 km s$^{-1}$ with a relative velocity of 15 km s$^{-1}$. These clouds may be substructures of two larger clouds having velocities of $sim$ 35 km s$^{-1}$ ($gtrsim 10^3 $ M$_{odot}$) and $sim$ 20 km s$^{-1}$ ($gtrsim 10^4 $ M$_{odot}$), respectively.
We present the first results of high-spectral resolution (0.023 km/s) N$_2$H$^+$ observations of dense gas dynamics at core scales (~0.01 pc) using the recently commissioned Argus instrument on the Green Bank Telescope (GBT). While the fitted linear velocity gradients across the cores measured in our targets nicely agree with the well-known power-law correlation between the specific angular momentum and core size, it is unclear if the observed gradients represent core-scale rotation. In addition, our Argus data reveal detailed and intriguing gas structures in position-velocity (PV) space for all 5 targets studied in this project, which could suggest that the velocity gradients previously observed in many dense cores actually originate from large-scale turbulence or convergent flow compression instead of rigid-body rotation. We also note that there are targets in this study with their star-forming disks nearly perpendicular to the local velocity gradients, which, assuming the velocity gradient represents the direction of rotation, is opposite to what is described by the classical theory of star formation. This provides important insight on the transport of angular momentum within star-forming cores, which is a critical topic on studying protostellar disk formation.
I describe the scenario of molecular cloud (MC) evolution that has emerged over the past decade or so. MCs can start out as cold atomic clouds formed by compressive motions in the warm neutral medium (WNM) of galaxies. Such motions can be driven by l arge-scale instabilities, or by local turbulence. The compressions induce a phase transition to the cold neutral medium (CNM) to form growing cold atomic clouds, which in their early stages may constitute thin CNM sheets. Several dynamical instabilities soon destabilize a cloud, rendering it turbulent. For solar neighborhood conditions, a cloud is coincidentally expected to become molecular, magnetically supercritical, and gravitationally dominated at roughly the same column density, $N sim 1.5 times 10^21 psc approx 10 Msun$ pc$^{-2}$. At this point, the cloud begins to contract gravitationally. However, before its global collapse is completed ($sim 10^7$ yr later), the nonlinear density fluctuations within the cloud, which have shorter local free-fall times, collapse first and begin forming stars, a few Myr after the global contraction started. Large-scale fluctuations of lower mean densities collapse later, so the formation of massive star-forming regions is expected to occur late in the evolution of a large cloud complex, while scattered low-mass regions are expected to form earlier. Eventually, the local star formation episodes are terminated by stellar feedback, which disperses the local dense gas, although more work is necessary to clarify the details and characteristic scales of this process.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا