ترغب بنشر مسار تعليمي؟ اضغط هنا

Dissipative Floquet Dynamics: from Steady State to Measurement Induced Criticality in Trapped-ion Chains

154   0   0.0 ( 0 )
 نشر من قبل Piotr Sierant
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum systems evolving unitarily and subject to quantum measurements exhibit various types of non-equilibrium phase transitions, arising from the competition between unitary evolution and measurements. Dissipative phase transitions in steady states of time-independent Liouvillians and measurement induced phase transitions at the level of quantum trajectories are two primary examples of such transitions. Investigating a many-body spin system subject to periodic resetting measurements, we argue that many-body dissipative Floquet dynamics provides a natural framework to analyze both types of transitions. We show that a dissipative phase transition between a ferromagnetic ordered phase and a paramagnetic disordered phase emerges for long range systems as a function of measurement probabilities. A measurement induced transition of the entanglement entropy between volume law scaling and area law scaling is also present, and is distinct from the ordering transition. The ferromagnetic phase is lost for short range interactions, while the volume law phase of the entanglement is enhanced. An analysis of multifractal properties of wave function in Hilbert space provides a common perspective on both types of transitions in the system. Our findings are immediately relevant to trapped ion experiments, for which we detail a blueprint proposal based on currently available platforms.



قيم البحث

اقرأ أيضاً

Linear arrays of trapped and laser cooled atomic ions are a versatile platform for studying emergent phenomena in strongly-interacting many-body systems. Effective spins are encoded in long-lived electronic levels of each ion and made to interact thr ough laser mediated optical dipole forces. The advantages of experiments with cold trapped ions, including high spatiotemporal resolution, decoupling from the external environment, and control over the system Hamiltonian, are used to measure quantum effects not always accessible in natural condensed matter samples. In this review we highlight recent work using trapped ions to explore a variety of non-ergodic phenomena in long-range interacting spin-models which are heralded by memory of out-of-equilibrium initial conditions. We observe long-lived memory in static magnetizations for quenched many-body localization and prethermalization, while memory is preserved in the periodic oscillations of a driven discrete time crystal state.
Nascent platforms for programmable quantum simulation offer unprecedented access to new regimes of far-from-equilibrium quantum many-body dynamics in (approximately) isolated systems. Here, achieving precise control over quantum many-body entanglemen t is an essential task for quantum sensing and computation. Extensive theoretical work suggests that these capabilities can enable dynamical phases and critical phenomena that exhibit topologically-robust methods to create, protect, and manipulate quantum entanglement that self-correct against large classes of errors. However, to date, experimental realizations have been confined to classical (non-entangled) symmetry-breaking orders. In this work, we demonstrate an emergent dynamical symmetry protected topological phase (EDSPT), in a quasiperiodically-driven array of ten $^{171}text{Yb}^+$ hyperfine qubits in Honeywells System Model H1 trapped-ion quantum processor. This phase exhibits edge qubits that are dynamically protected from control errors, cross-talk, and stray fields. Crucially, this edge protection relies purely on emergent dynamical symmetries that are absolutely stable to generic coherent perturbations. This property is special to quasiperiodically driven systems: as we demonstrate, the analogous edge states of a periodically driven qubit-array are vulnerable to symmetry-breaking errors and quickly decohere. Our work paves the way for implementation of more complex dynamical topological orders that would enable error-resilient techniques to manipulate quantum information.
The transport of excitations governs fundamental properties of matter. Particularly rich physics emerges in the interplay between disorder and environmental noise, even in small systems such as photosynthetic biomolecules. Counterintuitively, noise c an enhance coherent quantum transport, which has been proposed as a mechanism behind the high transport efficiencies observed in photosynthetic complexes. This effect has been called environmental-assisted quantum transport (ENAQT). Here, we propose a quantum simulation of the excitation transport in an open quantum network, taking advantage of the high controllability of current trapped-ion experiments. Our scheme allows for the controlled study of various different aspects of the excitation transfer, ranging from the influence of static disorder and interaction range, over the effect of Markovian and non-Markovian dephasing, to the impact of a continuous insertion of excitations. Our proposal discusses experimental error sources and realistic parameters, showing that it can be implemented in state-of-the-art ion-chain experiments.
101 - Longwen Zhou 2021
Time-periodic driving fields could endow a system with peculiar topological and transport features. In this work, we find dynamically controlled localization transitions and mobility edges in non-Hermitian quasicrystals via shaking the lattice period ically. The driving force dresses the hopping amplitudes between lattice sites, yielding alternate transitions between localized, mobility edge and extended non-Hermitian quasicrystalline phases. We apply our Floquet engineering approach to five representative models of non-Hermitian quasicrystals, obtain the conditions of photon-assisted localization transitions and mobility edges, and find the expressions of Lyapunov exponents for some models. We further introduce topological winding numbers of Floquet quasienergies to distinguish non-Hermitian quasicrystalline phases with different localization nature. Our discovery thus extend the study of quasicrystals to non-Hermitian Floquet systems, and provide an efficient way of modulating the topological and transport properties of these unique phases.
In experimentally realistic situations, quantum systems are never perfectly isolated and the coupling to their environment needs to be taken into account. Often, the effect of the environment can be well approximated by a Markovian master equation. H owever, solving this master equation for quantum many-body systems, becomes exceedingly hard due to the high dimension of the Hilbert space. Here we present an approach to the effective simulation of the dynamics of open quantum many-body systems based on machine learning techniques. We represent the mixed many-body quantum states with neural networks in the form of restricted Boltzmann machines and derive a variational Monte-Carlo algorithm for their time evolution and stationary states. We document the accuracy of the approach with numerical examples for a dissipative spin lattice system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا