ترغب بنشر مسار تعليمي؟ اضغط هنا

Identification of 3 cataclysmic variables detected by the ART-XC and eROSITA telescopes aboard SRG during the all-sky X-ray survey

81   0   0.0 ( 0 )
 نشر من قبل Rodion Burenin
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of three previously unknown cataclysmic variables in the data of the first year of the all-sky X-ray survey by the SRG orbital observatory. The sources were selected due to their brightness in the 4--12 keV band in the data of the Mikhail Pavlinsky ART-XC telescope. They are also detected by the eROSITA telescope, which provided accurate localizations and spectral data for broad-band spectral analysis. All three objects had been previously known as X-ray sources from the ROSAT all-sky survey and XMM-Newton slew survey, but their nature remained unknown. The X-ray spectra obtained by eROSITA and ART-XC are consistent with optically thin thermal emission with a temperature kT>~15 keV for SRGAJ194638.9+704552 and SRGAJ225412.8+690658 and kT>~5 keV for SRGAJ204547.8+672642. This, together with the inferred high X-ray luminosities ($2times 10^{32}$-$3times 10^{33}$ erg s$^{-1}$), strongly suggests that all three sources are CVs. We have obtained optical photometry and spectroscopy for these objects using the AZT-33IK 1.6-m telescope of the Sayan Observatory. The optical properties confirm the CV nature of the objects. We conclude that SRGAJ194638.9+704552 is an intermediate polar, SRGAJ204547.8+672642 is most likely a polar or an intermediate polar, and SRGAJ225412.8+690658 can be either a magnetic or a non-magnetic CV. We also measured an orbital period of 2.98~hours for SRGAJ204547.8+672642, based on TESS data. Three out of the planned eight SRG all-sky surveys have now been completed. We expect to find plenty of new CVs during the survey and to continue our optical follow-up program.



قيم البحث

اقرأ أيضاً

We present a first catalog of sources detected by the Mikhail Pavlinsky ART-XC telescope aboard the SRG observatory in the 4-12 keV energy band during its on-going all-sky survey. The catalog comprises 867 sources detected on the combined map of the first two 6-month scans of the sky (Dec. 2019 - Dec. 2020) - ART-XC sky surveys 1 and 2, or ARTSS12. The achieved sensitivity to point sources varies between ~5x10-12 erg/s/cm2 near the Ecliptic plane and better than 10-12 erg/s/cm2 (4-12 keV) near the Ecliptic poles, and the typical localization accuracy is ~15 arcsec. Among the 750 sources of known or suspected origin in the catalog, 56% are extragalactic (mostly active galactic nuclei (AGN) and clusters of galaxies) and the rest are Galactic (mostly cataclysmic variables (CVs) and low- and high-mass X-ray binaries). For 116 sources ART-XC has detected X-rays for the first time. Although the majority of these (~80) are expected to be spurious (for the adopted detection threshold), there can be a significant number of newly discovered astrophysical objects. We have started a program of optical follow-up observations of the new and previously unidentified X-ray sources, which has already led to the identification of several AGN and CVs. With the SRG all-sky survey planned to continue for a total of 4 years, we can expect the ART-XC survey in the 4-12 keV band to significantly surpass the previous surveys carried out in similar (medium X-ray) energy bands in terms of the combination of angular resolution, sensitivity, and sky coverage.
142 - I. A. Zaznobin 2021
We present the results of our identification of eight objects from a preliminary catalogue of X-ray sources detected in the 4-12 keV energy band by the Mikhail Pavlinsky ART-XC telescope aboard the SRG observatory during its first all-sky survey. Thr ee of them (SRGAJ005751.0+210846,SRGAJ014157.0-032915, SRGAJ232446.8+440756) have been discovered by ART-XC, while five were already known previously as X-ray sources, but their nature remained unknown. The last five sources have also been detected in soft X-rays by the eROSITA telescope of the SRG observatory. Our optical observations were carried out at the 1.6-m AZT-33IK telescope of the Sayan Observatory and the 1.5-m Russian-Turkish telescope (RTT-150). All of the investigated objects have turned out to be active galactic nuclei (AGNs) at redshifts from 0.019 to 0.283. Six of them are Seyfert 2 galaxies(including one Seyfert 1.9 galaxy), one (SRGAJ005751.0+210846) is a hidden AGN (in an edge-on galaxy), and one (SRGAJ224125.9+760343) is a narrow-line Seyfert 1 galaxy. The latter object is characterized by a high X-ray luminosity (~(2-13)*10^44 erg/s in the 4-12 keV band) and,according to our black hole mass estimate (~2*10^7 M_sun), an accretion rate close to the Eddington limit. All three AGNs discovered by the ART-XC telescope (which are not detected by the eROSITA telescope) are characterized by a high absorption column density (N_H > 3*10^23 cm^-2). The results obtained confirm the expectations that the ART-XC telescope is an efficient instrument for searches of heavily obscured and other interesting AGNs in the nearby (z<0.3) Universe. The SRG all-sky survey will last for more than 3 years more, which will allow many such objects to be discovered.
eROSITA (extended ROentgen Survey with an Imaging Telescope Array) instrument onboard the Russian-German `Spectrum-Roentgen-Gamma (SRG) mission observed the Her X-1/HZ Her binary system in multiple scans over the source during the first and second SR G all-sky surveys. Both observations occurred during a low state of the X-ray source when the outer parts of the accretion disk blocked the neutron star from view. The orbital modulation of the X-ray flux was detected during the low states. We argue that the detected X-ray radiation results from scattering of the emission of the central source by three distinct regions: (a) an optically thin hot corona with temperature $sim (2-4) times 10^6$ K above the irradiated hemisphere of the optical star; (b) an optically thin hot halo above the accretion disk; and (c) the optically thick cold atmosphere of the optical star. The latter region effectively scatters photons with energies above $5-6$ keV.
eROSITA (extended ROentgen Survey with an Imaging Telescope Array) is the core instrument on the Russian Spektrum-Roentgen-Gamma (SRG) mission which is scheduled for launch in late 2012. eROSITA is fully approved and funded by the German Space Agency DLR and the Max-Planck-Society. The design driving science is the detection of 50 - 100 thousands Clusters of Galaxies up to redshift z ~ 1.3 in order to study the large scale structure in the Universe and test cosmological models, especially Dark Energy. This will be accomplished by an all-sky survey lasting for four years plus a phase of pointed observations. eROSITA consists of seven Wolter-I telescope modules, each equipped with 54 Wolter-I shells having an outer diameter of 360 mm. This would provide and effective area at 1.5 keV of ~ 1500 cm2 and an on axis PSF HEW of 15 which would provide an effective angular resolution of 25-30. In the focus of each mirror module, a fast frame-store pn-CCD will provide a field of view of 1 deg in diameter for an active FOV of ~ 0.83 deg^2. At the time of writing the instrument development is currently in phase C/D.
Supernova remnants (SNRs) are observable for about 6-15x10^4 years before they fade into the Galactic interstellar medium. With a Galactic supernova rate of approximately two per century, we can expect to have of the order of 1200 SNRs in our Galaxy. However, only about 300 of them are known to date, with the majority having been discovered in Galactic plane radio surveys. Given that these SNRs represent the brightest tail of the distribution and are mostly located close to the plane, they are not representative of the complete sample. Here we report findings from the search for new SNRs in the eROSITA all-sky survey data which led to the detection of one of the largest SNRs discovered at wavelengths other than the radio: G249.5+24.5. This source is located at a relatively high Galactic latitude, where SNRs are not usually expected to be found. The remnant, Hoinga, has a diameter of about 4.4 degrees and shows a circular shaped morphology with diffuse X-ray emission filling almost the entire remnant. Spectral analysis of the remnant emission reveals that an APEC spectrum from collisionally ionised diffuse gas and a plane-parallel shock plasma model with non-equilibrium ionisation are both able to provide an adequate description of the data, suggesting a gas temperature of the order of kT = 0.1 keV and an absorbing column density of N_H=3.6 x 10^20 cm^-2. Subsequent searches for a radio counterpart of the Hoinga remnant identified its radio emission in archival data from the Continuum HI Parkes All-Sky Survey (CHIPASS) and the 408-MHz `Haslam all-sky survey. The radio spectral index alpha=-0.69 +- 0.08 obtained from these data definitely confirms the SNR nature of Hoinga. From its size and X-ray and radio spectral properties we conclude that Hoinga is a middle-aged Vela-like SNR located at a distance of about twice that of the Vela SNR, i.e. at ~500 pc.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا