ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterization of the probability and information entropy of a process with an increasing sample space by different functional forms of expansion, with an application to hyperinflation

140   0   0.0 ( 0 )
 نشر من قبل Larry Lacey
 تاريخ النشر 2021
  مجال البحث اقتصاد فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

There is a random variable (X) with a determined outcome (i.e., X = x0), p(x0) = 1. Consider x0 to have a discrete uniform distribution over the integer interval [1, s], where the size of the sample space (s) = 1, in the initial state, such that p(x0) = 1. What is the probability of x0 and the associated information entropy (H), as s increases by means of different functional forms of expansion? Such a process has been characterised in the case of (1) a mono-exponential expansion of the sample space; (2) a power function expansion; (3) double exponential expansion. The double exponential expansion of the sample space with time (from a natural log relationship between t and n) describes a hyperinflationary process. Over the period from the middle of 1920 to the end of 1923, the purchasing power of the Weimar Republic paper Mark to purchase one gold Mark became close to zero (1 paper Mark = 10 to the power of -12 gold Mark). From the purchasing power of the paper Mark to purchase one gold Mark, the information entropy of this hyperinflationary process was determined.

قيم البحث

اقرأ أيضاً

Humanity has been fascinated by the pursuit of fortune since time immemorial, and many successful outcomes benefit from strokes of luck. But success is subject to complexity, uncertainty, and change - and at times becoming increasingly unequally dist ributed. This leads to tension and confusion over to what extent people actually get what they deserve (i.e., fairness/meritocracy). Moreover, in many fields, humans are over-confident and pervasively confuse luck for skill (I win, its skill; I lose, its bad luck). In some fields, there is too much risk taking; in others, not enough. Where success derives in large part from luck - and especially where bailouts skew the incentives (heads, I win; tails, you lose) - it follows that luck is rewarded too much. This incentivizes a culture of gambling, while downplaying the importance of productive effort. And, short term success is often rewarded, irrespective, and potentially at the detriment, of the long-term system fitness. However, much success is truly meritocratic, and the problem is to discern and reward based on merit. We call this the fair reward problem. To address this, we propose three different measures to assess merit: (i) raw outcome; (ii) risk adjusted outcome, and (iii) prospective. We emphasize the need, in many cases, for the deductive prospective approach, which considers the potential of a system to adapt and mutate in novel futures. This is formalized within an evolutionary system, comprised of five processes, inter alia handling the exploration-exploitation trade-off. Several human endeavors - including finance, politics, and science -are analyzed through these lenses, and concrete solutions are proposed to support a prosperous and meritocratic society.
Space conditioning, and cooling in particular, is a key factor in human productivity and well-being across the globe. During the 21st century, global cooling demand is expected to grow significantly due to the increase in wealth and population in sun ny nations across the globe and the advance of global warming. The same locations that see high demand for cooling are also ideal for electricity generation via photovoltaics (PV). Despite the apparent synergy between cooling demand and PV generation, the potential of the cooling sector to sustain PV generation has not been assessed on a global scale. Here, we perform a global assessment of increased PV electricity adoption enabled by the residential cooling sector during the 21st century. Already today, utilizing PV production for cooling could facilitate an additional installed PV capacity of approximately 540 GW, more than the global PV capacity of today. Using established scenarios of population and income growth, as well as accounting for future global warming, we further project that the global residential cooling sector could sustain an added PV capacity between 20-200 GW each year for most of the 21st century, on par with the current global manufacturing capacity of 100 GW. Furthermore, we find that without storage, PV could directly power approximately 50% of cooling demand, and that this fraction is set to increase from 49% to 56% during the 21st century, as cooling demand grows in locations where PV and cooling have a higher synergy. With this geographic shift in demand, the potential of distributed storage also grows. We simulate that with a 1 m$^3$ water-based latent thermal storage per household, the fraction of cooling demand met with PV would increase from 55% to 70% during the century. These results show that the synergy between cooling and PV is notable and could significantly accelerate the growth of the global PV industry.
Various measures have been taken in different countries to mitigate the Covid-19 epidemic. But, throughout the world, many citizens dont understand well how these measures are taken and even question the decisions taken by their government. Should th e measures be more (or less) restrictive? Are they taken for a too long (or too short) period of time? To provide some quantitative elements of response to these questions, we consider the well-known SEIR model for the Covid-19 epidemic propagation and propose a pragmatic model of the government decision-making operation. Although simple and obviously improvable, the proposed model allows us to study the tradeoff between health and economic aspects in a pragmatic and insightful way. Assuming a given number of phases for the epidemic and a desired tradeoff between health and economic aspects, it is then possible to determine the optimal duration of each phase and the optimal severity level for each of them. The numerical analysis is performed for the case of France but the adopted approach can be applied to any country. One of the takeaway messages of this analysis is that being able to implement the optimal 4-phase epidemic management strategy in France would have led to 1.05 million infected people and a GDP loss of 231 billion euro instead of 6.88 million of infected and a loss of 241 billion euro. This indicates that, seen from the proposed model perspective, the effectively implemented epidemic management strategy is good economically, whereas substantial improvements might have been obtained in terms of health impact. Our analysis indicates that the lockdown/severe phase should have been more severe but shorter, and the adjustment phase occurred earlier. Due to the natural tendency of people to deviate from the official rules, updating measures every month over the whole epidemic episode seems to be more appropriate.
We present a new metric estimating fitness of countries and complexity of products by exploiting a non-linear non-homogeneous map applied to the publicly available information on the goods exported by a country. The non homogeneous terms guarantee bo th convergence and stability. After a suitable rescaling of the relevant quantities, the non homogeneous terms are eventually set to zero so that this new metric is parameter free. This new map almost reproduces the results of the original homogeneous metrics already defined in literature and allows for an approximate analytic solution in case of actual binarized matrices based on the Revealed Comparative Advantage (RCA) indicator. This solution is connected with a new quantity describing the neighborhood of nodes in bipartite graphs, representing in this work the relations between countries and exported products. Moreover, we define the new indicator of country net-efficiency quantifying how a country efficiently invests in capabilities able to generate innovative complex high quality products. Eventually, we demonstrate analytically the local convergence of the algorithm involved.
We analyse the economics and epidemiology of different scenarios for a phased restart of the UK economy. Our economic model is designed to address the unique features of the COVID-19 pandemic. Social distancing measures affect both supply and demand, and input-output constraints play a key role in restricting economic output. Standard models for production functions are not adequate to model the short-term effects of lockdown. A survey of industry analysts conducted by IHS Markit allows us to evaluate which inputs for each industry are absolutely necessary for production over a two month period. Our model also includes inventory dynamics and feedback between unemployment and consumption. We demonstrate that economic outcomes are very sensitive to the choice of production function, show how supply constraints cause strong network effects, and find some counter-intuitive effects, such as that reopening only a few industries can actually lower aggregate output. Occupation-specific data and contact surveys allow us to estimate how different industries affect the transmission rate of the disease. We investigate six different re-opening scenarios, presenting our best estimates for the increase in R0 and the increase in GDP. Our results suggest that there is a reasonable compromise that yields a relatively small increase in R0 and delivers a substantial boost in economic output. This corresponds to a situation in which all non-consumer facing industries reopen, schools are open only for workers who need childcare, and everyone who can work from home continues to work from home.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا