ﻻ يوجد ملخص باللغة العربية
Menasco proved that nontrivial links in the 3-sphere with connected prime alternating non-2-braid projections are hyperbolic. This was further extended to augmented alternating links wherein non-isotopic trivial components bounding disks punctured twice by the alternating link were added. Lackenby proved that the first and second collections of links together form a closed subset of the set of all finite volume hyperbolic 3-manifolds in the geometric topology. Adams showed hyperbolicity for generalized augmented alternating links, which include additional trivial components that bound n-punctured disks for $n geq 2$. Here we prove that generalized augmented cellular alternating links in I-bundles over closed surfaces are also hyperbolic and that in $S times I$, the cellular alternating links and the augmented cellular alternating together form a closed subset of finite volume hyperbolic 3-manifolds in the geometric topology. Explicit examples of additional links in $S times I$ to which these results apply are included.
We discuss links in thickened surfaces. We define the Khovanov-Lipshitz-Sarkar stable homotopy type and the Steenrod square for the homotopical Khovanov homology of links in thickened surfaces with genus$>1$. A surface means a closed oriented surfa
Weakly generalised alternating knots are knots with an alternating projection onto a closed surface in a compact irreducible 3-manifold, and they share many hyperbolic geometric properties with usual alternating knots. For example, usual alternating
We present explicit geometric decompositions of the complement of tiling links, which are alternating links whose projection graphs are uniform tilings of the 2-sphere, the Euclidean plane or the hyperbolic plane. This requires generalizing the angle
In this note, we construct a chord index homomorphism from a subgroup of $H_1(Sigma, mathbb{Z})$ to the group of chord indices of a knot $K$ in $Sigmatimes I$. Some knot invariants derived from this homomorphism are discussed.
To any prime alternating link, we associate a collection of hyperbolic right-angled ideal polyhedra by relating geometric, topological and combinatorial methods to decompose the link complement. The sum of the hyperbolic volumes of these polyhedra is