ﻻ يوجد ملخص باللغة العربية
In easy-plane ferromagnets, all magnetic dynamics are restricted in a specific plane, and the domain wall becomes massive instead of gyroscopic. Here we show that the interaction between domain wall and spin wave packet in easy-plane ferromagnets takes analogy to two massive particles colliding via attraction. Due to mutual attraction, the penetration of spin wave packet leads to backward displacement of the domain wall, and further the penetration of continuous spin wave leads to constant velocity of domain wall. The underlying temporary exchange of momentum, instead of permanent transfer of linear and angular momenta, provides a new paradigm in magnonically driving domain wall.
We demonstrate optical manipulation of the position of a domain wall in a dilute magnetic semiconductor, GaMnAsP. Two main contributions are identified. Firstly, photocarrier spin exerts a spin transfer torque on the magnetization via the exchange in
Domain-wall (DW) motion in magnetic nanostrips is intensively studied, in particular because of the possible applications in data storage. In this work, we will investigate a novel method of DW motion using magnetic field pulses, with the precession
We investigate ferrimagnetic domain wall dynamics induced by circularly polarized spin waves theoretically and numerically. We find that the direction of domain wall motion depends on both the circular polarization of spin waves and the sign of net s
We report on current induced domain wall propagation in a patterned GaMnAs microwire with perpendicular magnetization. An unexpected slowing down of the propagation velocity has been found when the moving domain wall extends over only half of the wid
Polarization, denoting the precession direction with respect to the background magnetization, is an intrinsic degree of freedom of spin wave. Using magnetic textures to control the spin wave polarization is fundamental and indispensable toward reprog