ترغب بنشر مسار تعليمي؟ اضغط هنا

Large deviations for metastable states of Markov processes with absorbing states with applications to population models in stable or randomly switching environment

54   0   0.0 ( 0 )
 نشر من قبل Cecile Monthus
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Cecile Monthus




اسأل ChatGPT حول البحث

The large deviations at Level 2.5 are applied to Markov processes with absorbing states in order to obtain the explicit extinction rate of metastable quasi-stationary states in terms of their empirical time-averaged density and of their time-averaged empirical flows over a large time-window $T$. The standard spectral problem for the slowest relaxation mode can be recovered from the full optimization of the extinction rate over all these empirical observables and the equivalence can be understood via the Doob generator of the process conditioned to survive up to time $T$. The large deviation properties of any time-additive observable of the Markov trajectory before extinction can be derived from the Level 2.5 via the decomposition of the time-additive observable in terms of the empirical density and the empirical flows. This general formalism is described for continuous-time Markov chains, with applications to population birth-death model in a stable or in a switching environment, and for diffusion processes in dimension $d$.



قيم البحث

اقرأ أيضاً

We present a systematic analysis of stochastic processes conditioned on an empirical measure $Q_T$ defined in a time interval $[0,T]$ for large $T$. We build our analysis starting from a discrete time Markov chain. Results for a continuous time Marko v process and Langevin dynamics are derived as limiting cases. We show how conditioning on a value of $Q_T$ modifies the dynamics. For a Langevin dynamics with weak noise, we introduce conditioned large deviations functions and calculate them using either a WKB method or a variational formulation. This allows us, in particular, to calculate the typical trajectory and the fluctuations around this optimal trajectory when conditioned on a certain value of $Q_T$.
81 - Cecile Monthus 2021
Among the Markov chains breaking detailed-balance that have been proposed in the field of Monte-Carlo sampling in order to accelerate the convergence towards the steady state with respect to the detailed-balance dynamics, the idea of Lifting consists in duplicating the configuration space into two copies $sigma=pm$ and in imposing directed flows in each copy in order to explore the configuration space more efficiently. The skew-detailed-balance Lifted-Markov-chain introduced by K. S. Turitsyn, M. Chertkov and M. Vucelja [Physica D Nonlinear Phenomena 240 , 410 (2011)] is revisited for the Curie-Weiss mean-field ferromagnetic model, where the dynamics for the magnetization is closed. The large deviations at various levels for empirical time-averaged observables are analyzed and compared with their detailed-balance counterparts, both for the discrete extensive magnetization $M$ and for the continuous intensive magnetization $m=frac{M}{N}$ for large system-size $N$.
113 - B. Spagnolo , A. A. Dubkov , 2004
The overdamped motion of a Brownian particle in randomly switching piece-wise metastable linear potential shows noise enhanced stability (NES): the noise stabilizes the metastable system and the system remains in this state for a longer time than in the absence of white noise. The mean first passage time (MFPT) has a maximum at a finite value of white noise intensity. The analytical expression of MFPT in terms of the white noise intensity, the parameters of the potential barrier, and of the dichotomous noise is derived. The conditions for the NES phenomenon and the parameter region where the effect can be observed are obtained. The mean first passage time behaviours as a function of the mean flipping rate of the potential for unstable and metastable initial configurations are also analyzed. We observe the resonant activation phenomenon for initial metastable configuration of the potential profile.
Here we demonstrate that tensor network techniques - originally devised for the analysis of quantum many-body problems - are well suited for the detailed study of rare event statistics in kinetically constrained models (KCMs). As concrete examples we consider the Fredrickson-Andersen and East models, two paradigmatic KCMs relevant to the modelling of glasses. We show how variational matrix product states allow to numerically approximate - systematically and with high accuracy - the leading eigenstates of the tilted dynamical generators which encode the large deviation statistics of the dynamics. Via this approach we can study system sizes beyond what is possible with other methods, allowing us to characterise in detail the finite size scaling of the trajectory-space phase transition of these models, the behaviour of spectral gaps, and the spatial structure and entanglement properties of dynamical phases. We discuss the broader implications of our results.
We obtain the exact large deviation functions of the density profile and of the current, in the non-equilibrium steady state of a one dimensional symmetric simple exclusion process coupled to boundary reservoirs with slow rates. Compared to earlier r esults, where rates at the boundaries are comparable to the bulk ones, we show how macroscopic fluctuations are modified when the boundary rates are slower by an order of inverse of the system length.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا