ترغب بنشر مسار تعليمي؟ اضغط هنا

Can strangelets be detected in a large LAr neutrino detector?

97   0   0.0 ( 0 )
 نشر من قبل Mihaela Parvu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Predicted as possible bound states of up, down and strange quarks, strangelets could be more energetically favourable and more stable than nuclear matter. In this paper we explore the possibility of detecting such particles with the future large liquid argon detectors developed for neutrino physics. Using signals from ionization and scintillations we suggest that a calorimetric TCP detector is able to put in evidence and to discriminate between light strangelets at intermediate energy.



قيم البحث

اقرأ أيضاً

The Icarus T600 detector represents the first example of a fully working large-mass LAr detector. After operations at the LNGS INFN laboratories, it has been refurbished at CERN in 2015-2017 and then installed as far detector on the BNB neutrino beam line at FNAL. The main operations involved in the T600 overhauling are thouroghly described in this paper.
ArgoNeuT, or Argon Neutrino Test, is a 170 liter liquid argon time projection chamber designed to collect neutrino interactions from the NuMI beam at Fermi National Accelerator Laboratory. ArgoNeuT operated in the NuMI low-energy beam line directly u pstream of the MINOS Near Detector from September 2009 to February 2010, during which thousands of neutrino and antineutrino events were collected. The MINOS Near Detector was used to measure muons downstream of ArgoNeuT. Though ArgoNeuT is primarily an R&D project, the data collected provide a unique opportunity to measure neutrino cross sections in the 0.1-10 GeV energy range. Fully reconstructing the muon from these interactions is imperative for these measurements. This paper focuses on the complete kinematic reconstruction of neutrino-induced through-going muons tracks. Analysis of this high statistics sample of minimum ionizing tracks demonstrates the reliability of the geometric and calorimetric reconstruction in the ArgoNeuT detector.
This proposal describes an experimental search for sterile neutrinos beyond the Standard Model with a new CERN-SPS neutrino beam. The experiment is based on two identical LAr-TPCs followed by magnetized spectrometers, observing the electron and muon neutrino events at 1600 and 300 m from the proton target. This project will exploit the ICARUS T600, moved from LNGS to the CERN Far position. An additional 1/4 of the T600 detector will be constructed and located in the Near position. Two spectrometers will be placed downstream of the two LAr-TPC detectors to greatly complement the physics capabilities. Spectrometers will exploit a classical dipole magnetic field with iron slabs, and a new concept air-magnet, to perform charge identification and muon momentum measurements in a wide energy range over a large transverse area. In the two positions, the radial and energy spectra of the nu_e beam are practically identical. Comparing the two detectors, in absence of oscillations, all cross sections and experimental biases cancel out, and the two experimentally observed event distributions must be identical. Any difference of the event distributions at the locations of the two detectors might be attributed to the possible existence of { u}-oscillations, presumably due to additional neutrinos with a mixing angle sin^2(2theta_new) and a larger mass difference Delta_m^2_new. The superior quality of the LAr imaging TPC, in particular its unique electron-pi_zero discrimination allows full rejection of backgrounds and offers a lossless nu_e detection capability. The determination of the muon charge with the spectrometers allows the full separation of nu_mu from anti-nu_mu and therefore controlling systematics from muon mis-identification largely at high momenta.
122 - A. Bross , R. Wands , R. Bayes 2013
A neutrino factory has unparalleled physics reach for the discovery and measurement of CP violation in the neutrino sector. A far detector for a neutrino factory must have good charge identification with excellent background rejection and a large mas s. An elegant solution is to construct a magnetized iron neutrino detector (MIND) along the lines of MINOS, where iron plates provide a toroidal magnetic field and scintillator planes provide 3D space points. In this report, the current status of a simulation of a toroidal MIND for a neutrino factory is discussed in light of the recent measurements of large $theta_{13}$. The response and performance using the 10 GeV neutrino factory configuration are presented. It is shown that this setup has equivalent $delta_{CP}$ reach to a MIND with a dipole field and is sensitive to the discovery of CP violation over 85% of the values of $delta_{CP}$.
265 - L. Agostino 2014
In June 2012, an Expression of Interest for a long-baseline experiment (LBNO) has been submitted to the CERN SPSC. LBNO considers three types of neutrino detector technologies: a double-phase liquid argon (LAr) TPC and a magnetised iron detector as f ar detectors. For the near detector, a high-pressure gas TPC embedded in a calorimeter and a magnet is the baseline design. A mandatory milestone is a concrete prototyping effort towards the envisioned large-scale detectors, and an accompanying campaign of measurements aimed at assessing the detector associated systematic errors. The proposed $6times 6times 6$m$^3$ DLAr is an industrial prototype of the design discussed in the EoI and scalable to 20 kton or 50~kton. It is to be constructed and operated in a controlled laboratory and surface environment with test beam access, such as the CERN North Area (NA). Its successful operation and full characterisation will be a fundamental milestone, likely opening the path to an underground deployment of larger detectors. The response of the DLAr demonstrator will be measured and understood with an unprecedented precision in a charged particle test beam (0.5-20 GeV/c). The exposure will certify the assumptions and calibrate the response of the detector, and allow to develop and to benchmark sophisticated reconstruction algorithms, such as those of 3-dimensional tracking, particle ID and energy flow in liquid argon. All these steps are fundamental for validating the correctness of the physics performance described in the LBNO EoI.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا