ترغب بنشر مسار تعليمي؟ اضغط هنا

Application of the Hilbert-Huang transform for analyzing SASI induced gravitational waves in a core-collapse supernova

78   0   0.0 ( 0 )
 نشر من قبل Mei Takeda
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Through numerical simulations, it is predicted that the gravitational waves (GWs) reflect the characteristics of the core-collapse supernova (CCSN) explosion mechanism. There are multiple GW excitation processes that occur inside a star before its explosion, and it is suggested that the GWs originating from the CCSN have a mode for each excitation process in terms of time-frequency representation. Therefore, we propose an application of the Hilbert-Huang Transform (HHT), which is a high-resolution time-frequency analysis method, to analyze these GW modes for theoretically probing and increasing our understanding of the explosion mechanism. The HHT defines frequency as a function of time, and is not bound by the trade-off between time and frequency resolutions. In this study, we analyze a gravitational waveform obtained from a three-dimensional general-relativistic CCSN model that showed a vigorous activity of the standing-accretion-shock-instability (SASI). We succeed in extracting the SASI induced GWs with high resolution on a time-frequency representation using the HHT and we examine their instantaneous frequencies.



قيم البحث

اقرأ أيضاً

It is known that a quasinormal mode (QNM) of a remnant black hole dominates a ringdown gravitational wave (GW) in a binary black hole (BBH) merger. To study properties of the QNMs, it is important to determine the time when the QNMs appear in a GW si gnal as well as to calculate its frequency and amplitude. In this paper, we propose a new method of estimating the starting time of the QNM and calculating the QNM frequency and amplitude of BBH GWs. We apply it to simulated merger waveforms by numerical relativity and the observed data of GW150914. The results show that the obtained QNM frequencies and time evolutions of amplitudes are consistent with the theoretical values within 1% accuracy for pure waveforms free from detector noise. In addition, it is revealed that there is a correlation between the starting time of the QNM and the spin of the remnant black hole. In the analysis of GW150914, we show that the parameters of the remnant black hole estimated through our method are consistent with those given by LIGO and a reasonable starting time of the QNM is determined.
A mechanism of formation of gravitational waves in the Universe is considered for a nonspherical collapse of matter. Nonspherical collapse results are presented for a uniform spheroid of dust and a finite-entropy spheroid. Numerical simulation result s on core-collapse supernova explosions are presented for the neutrino and magnetorotational models. These results are used to estimate the dimensionless amplitude of the gravitational wave with a frequency u ~1300 Hz, radiated during the collapse of the rotating core of a pre-supernova with a mass of 1:2M(sun) (calculated by the authors in 2D). This estimate agrees well with many other calculations (presented in this paper) that have been done in 2D and 3D settings and which rely on more exact and sophisticated calculations of the gravitational wave amplitude. The formation of the large-scale structure of the Universe in the Zeldovich pancake model involves the emission of very long-wavelength gravitational waves. The average amplitude of these waves is calculated from the simulation, in the uniform spheroid approximation, of the nonspherical collapse of noncollisional dust matter, which imitates dark matter. It is noted that a gravitational wave radiated during a core-collapse supernova explosion in our Galaxy has a sufficient amplitude to be detected by existing gravitational wave telescopes.
We present a new event trigger generator based on the Hilbert-Huang transform, named EtaGen ($eta$Gen). It decomposes a time-series data into several adaptive modes without imposing a priori bases on the data. The adaptive modes are used to find tran sients (excesses) in the background noises. A clustering algorithm is used to gather excesses corresponding to a single event and to reconstruct its waveform. The performance of EtaGen is evaluated by how many injections in the LIGO simulated data are found. EtaGen is viable as an event trigger generator when compared directly with the performance of Omicron, which is currently the best event trigger generator used in the LIGO Scientific Collaboration and Virgo Collaboration.
Using predictions from three-dimensional (3D) hydrodynamics simulations of core-collapse supernovae (CCSNe), we present a coherent network analysis to detection, reconstruction, and the source localization of the gravitational-wave (GW) signals. We u se the {tt RIDGE} pipeline for the analysis, in which the network of LIGO Hanford, LIGO Livingston, VIRGO, and KAGRA is considered. By combining with a GW spectrogram analysis, we show that several important hydrodynamics features in the original waveforms persist in the waveforms of the reconstructed signals. The characteristic excess in the spectrograms originates not only from rotating core-collapse, bounce and the subsequent ring down of the proto-neutron star (PNS) as previously identified, but also from the formation of magnetohydrodynamics jets and non-axisymmetric instabilities in the vicinity of the PNS. Regarding the GW signals emitted near at the rotating core bounce, the horizon distance extends up to $sim$ 18 kpc for the most rapidly rotating 3D model in this work. Following the rotating core bounce, the dominant source of the GW emission shifts to the non-axisymmetric instabilities. The horizon distances extend maximally up to $sim$ 40 kpc seen from the spin axis. With an increasing number of 3D models trending towards explosion recently, our results suggest that in addition to the best studied GW signals due to rotating core-collapse and bounce, the time is ripe to consider how we can do science from GWs of CCSNe much more seriously than before. Particularly the quasi-periodic signals due to the non-axisymmetric instabilities and the detectability should deserve further investigation to elucidate the inner-working of the rapidly rotating CCSNe.
142 - C. D. Ott 2012
Core-collapse supernovae are among the most energetic cosmic cataclysms. They are prodigious emitters of neutrinos and quite likely strong galactic sources of gravitational waves. Observation of both neutrinos and gravitational waves from the next ga lactic or near extragalactic core-collapse supernova will yield a wealth of information on the explosion mechanism, but also on the structure and angular momentum of the progenitor star, and on aspects of fundamental physics such as the equation of state of nuclear matter at high densities and low entropies. In this contribution to the proceedings of the Neutrino 2012 conference, we summarize recent progress made in the theoretical understanding and modeling of core-collapse supernovae. In this, our emphasis is on multi-dimensional processes involved in the explosion mechanism such as neutrino-driven convection and the standing accretion shock instability. As an example of how supernova neutrinos can be used to probe fundamental physics, we discuss how the rise time of the electron antineutrino flux observed in detectors can be used to probe the neutrino mass hierarchy. Finally, we lay out aspects of the neutrino and gravitational-wave signature of core-collapse supernovae and discuss the power of combined analysis of neutrino and gravitational wave data from the next galactic core-collapse supernova.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا