ترغب بنشر مسار تعليمي؟ اضغط هنا

The Deformation Spaces of Geodesic Triangulations of Flat Tori

110   0   0.0 ( 0 )
 نشر من قبل Yanwen Luo
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove that the deformation space of geodesic triangulations of a flat torus is homotopy equivalent to a torus. This solves an open problem proposed by Connelly et al. in 1983, in the case of flat tori. A key tool of the proof is a generalization of Tuttes embedding theorem for flat tori. When this paper is under preparation, Erickson and Lin proved a similar result, which works for all convex drawings.



قيم البحث

اقرأ أيضاً

We proved the contractibility of the deformation space of the geodesic triangulations on a closed surface of negative curvature. This solves an open problem proposed by Connelly et al. in 1983, in the case of hyperbolic surfaces. The main part of the proof is a generalization of Tuttes embedding theorem for closed surfaces of negative curvature.
470 - Matthew Cordes 2015
We introduce a new type of boundary for proper geodesic spaces, called the Morse boundary, that is constructed with rays that identify the hyperbolic directions in that space. This boundary is a quasi-isometry invariant and thus produces a well-defin ed boundary for any finitely generated group. In the case of a proper $mathrm{CAT}(0)$ space this boundary is the contracting boundary of Charney and Sultan and in the case of a proper Gromov hyperbolic space this boundary is the Gromov boundary. We prove three results about the Morse boundary of Teichmuller space. First, we show that the Morse boundary of the mapping class group of a surface is homeomorphic to the Morse boundary of the Teichmuller space of that surface. Second, using a result of Leininger and Schleimer, we show that Morse boundaries of Teichmuller space can contain spheres of arbitrarily high dimension. Finally, we show that there is an injective continuous map of the Morse boundary of Teichmuller space into the Thurston compactification of Teichmuller space by projective measured foliations.
We build an analogue of the Gromov boundary for any proper geodesic metric space, hence for any finitely generated group. More precisely, for any proper geodesic metric space $X$ and any sublinear function $kappa$, we construct a boundary for $X$, de noted $mathcal{partial}_{kappa} X$, that is quasi-isometrically invariant and metrizable. As an application, we show that when $G$ is the mapping class group of a finite type surface, or a relatively hyperbolic group, then with minimal assumptions the Poisson boundary of $G$ can be realized on the $kappa$-Morse boundary of $G$ equipped the word metric associated to any finite generating set.
We prove that the deformation space AH(M) of marked hyperbolic 3-manifolds homotopy equivalent to a fixed compact 3-manifold M with incompressible boundary is locally connected at minimally parabolic points. Moreover, spaces of Kleinian surface group s are locally connected at quasiconformally rigid points. Similar results are obtained for deformation spaces of acylindrical 3-manifolds and Bers slices.
In this paper, we explore minimal contact triangulations on contact 3-manifolds. We give many explicit examples of contact triangulations that are close to minimal ones. The main results of this article say that on any closed oriented 3-manifold the number of vertices for minimal contact triangulations for overtwisted contact structures grows at most linearly with respect to the relative $d^3$ invariant. We conjecture that this bound is optimal. We also discuss, in great details, contact triangulations for a certain family of overtwisted contact structures on 3-torus.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا