ﻻ يوجد ملخص باللغة العربية
We report the results of our participation in the SAMPL8 GDCC Blind Challenge for host-guest binding affinity predictions. Absolute binding affinity prediction is of central importance to the biophysics of molecular association and pharmaceutical discovery. The blinded SAMPL series have provided an important forum for assessing the reliability of binding free energy methods in an objective way. In this blinded challenge, we employed two binding free energy methods, the newly developed alchemical transfer method (ATM) and the well-established potential of mean force (PMF) physical pathway method, using the same setup and force field model. The calculated binding free energies from the two methods are in excellent quantitative agreement. Importantly, the results from the two methods were also found to agree well with the experimental binding affinities released subsequently, with an $R^2$ of 0.89 (ATM) and 0.83 (PMF). Given that the two free energy methods are based on entirely different thermodynamic pathways, the close agreement between the results from the two methods and their general agreement with the experimental binding free energies are a testament to the high quality achieved by theory and methods. The study provides further validation of the novel ATM binding free energy estimation protocol and it paves the way to further extensions of the method to more complex systems.
The Alchemical Transfer Method (ATM) for the calculation of standard binding free energies of non-covalent molecular complexes is presented. The method is based on a coordinate displacement perturbation of the ligand between the receptor binding site
One of the main applications of atomistic computer simulations is the calculation of ligand binding energies. The accuracy of these calculations depends on the force field quality and on the thoroughness of configuration sampling. Sampling is an obst
We present an extension of Alchemical Transfer Method (ATM) for the estimation of relative binding free energies of molecular complexes applicable to conventional as well as scaffold-hopping alchemical transformations. The method, named ATM-RBFE, imp
We examine the phase space structures that govern reaction dynamics in the absence of critical points on the potential energy surface. We show that in the vicinity of hyperbolic invariant tori it is possible to define phase space dividing surfaces th
We present an ab initio approach for evaluating a free energy profile along a reaction coordinate by combining logarithmic mean force dynamics (LogMFD) and first-principles molecular dynamics. The mean force, which is the derivative of the free energ